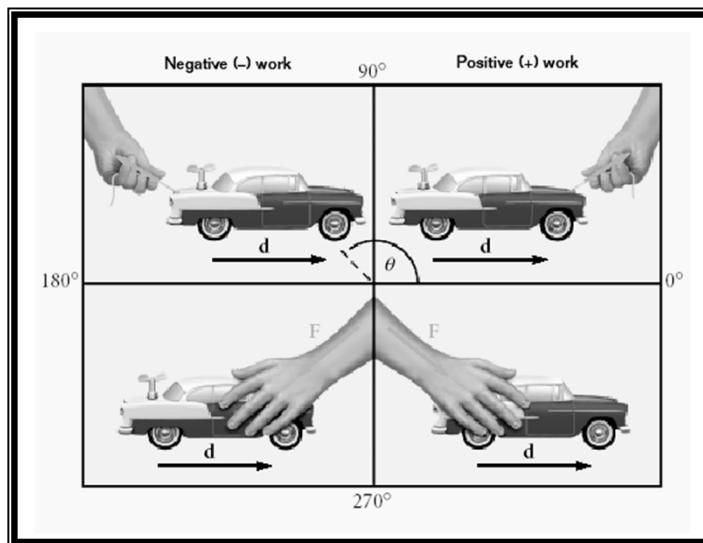


Work & Kinetic Energy


1

Work

- **Definition**
 - The transfer of energy from one object to another
 - Done by applying a force over a distance
 - distance must be _____ to the force
 - SI Unit of Joules
- **Equation**
 - $\text{Work} = \text{Force} \times \text{Distance}$
 - $W = F \times D$
- **If the object doesn't move, then no work is done.**

2

The Sign of Work

3

Work – Sample Problem 1

- Jamie lifts a 5.0 kg box from the ground to a shelf 2.3 m above the ground. How much work did Jamie do on the box?

4

Energy

- **Definition**
 - The ability of an object to do _____
- **Relation of energy and work**
 - When you work, you are _____ energy to the object that you are working on.
- **Unit of Measure**
 - Joule (J)

5

Kinetic Energy

- Object's energy due to its _____ or velocity

$$K = \frac{1}{2}mv^2$$

6

Kinetic Energy - Sample

- A 7.00 kg bowling ball moves across the floor. If the ball has a kinetic energy of 31.5 J, how fast is it moving?

7

Work-Kinetic Energy Theorem

- The net work done on an object is equal to the change in the kinetic energy of the object.

$$W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

8

Sample Problem

- You apply a force of 7.3 N to a stationary toy car over a distance of 25 cm. If the mass of the car is 135 g, what is the velocity of the car after you apply the force?