


# SOUND

# WAVES

1

## Sound

- A source, like a speaker, compresses air molecules at regular intervals, creating differences in pressure over time.
- This creates a \_\_\_\_\_



2

# Speed of Sound

- The speed of a sound wave depends on the

Speed of sound in various substances (CRC Handbook)

| Gasses (0°C)                   | Substance | Speed of Sound (m/s) |
|--------------------------------|-----------|----------------------|
| Carbon Dioxide                 | 259       |                      |
| Hydrogen                       | 1284      |                      |
| Helium                         | 965       |                      |
| Nitrogen                       | 334       |                      |
| Oxygen                         | 316       |                      |
| Air (21% Oxygen, 78% Nitrogen) | 331       |                      |
| Air (20°C)                     | 344       |                      |
| Liquids (25°C)                 |           |                      |
| Glycerol                       | 1904      |                      |
| Sea Water (3.5% salinity)      | 1535      |                      |
| Water                          | 1493      |                      |
| Mercury                        | 1450      |                      |
| Kerosene                       | 1324      |                      |
| Methyl Alcohol                 | 1103      |                      |
| Carbon Tetrachloride           | 926       |                      |
| Solids                         |           |                      |
| Diamond                        | 12000     |                      |
| Pyrex Glass                    | 5640      |                      |
| Iron                           | 5960      |                      |
| Granite                        | 6000      |                      |
| Aluminum                       | 5100      |                      |
| Brass                          | 4700      |                      |
| Copper (annealed)              | 4760      |                      |
| Gold                           | 3240      |                      |
| Lead (annealed)                | 2160      |                      |
| Rubber (gum)                   | 1550      |                      |

3

# Speed of Sound

- Speed of sound in air = 331 m/s @ 0° C
- In air, speed increases 0.6 m/s for each 1°C increase in temperature
- Velocity at any temperature can be found using: \_\_\_\_\_
- Follows all properties of waves including:  
\_\_\_\_\_
- Wavelength, \_\_\_\_\_, changes when a wave changes speed

4

## Speed of Sound Example

- A 281 Hz sound wave travels through 33.0°C air. What is the wavelength of the wave?

5

## Speed of Sound Example #2

- A sound wave has a frequency of 225.0 Hz and a wavelength of 1.55 m. At what temperature is this wave traveling?

6

## Pitch

- How high or low the perceived sound is
- Based on the frequency of sound
  - High frequency = \_\_\_\_\_ pitch
  - Low frequency = \_\_\_\_\_ pitch

7

## Pitch – the sound spectrum

- Humans can hear frequencies between 20 Hz and 20,000 Hz. These are called the audible sound waves.
- Sounds below 20 Hz are called \_\_\_\_\_.
- Sounds above 20,000 Hz are called \_\_\_\_\_.
  - Used for medical imaging and echolocation

8

## Doppler Effect

- Frequency shift that is the result of relative motion between the source of waves and an observer.
- Occurs with all wave motion
- Frequency gradually increases as the source approaches, then suddenly drops to a lower pitch as the source passes and moves away.



9

## Doppler Effect

- Here's why



- The source of the sound actually catches up to its own sound waves

• Example

10