


SOUND

Intensity

1

Audible Range

- Whether we can hear a sound or not depends on the frequency and intensity of the sound.

2

Sound Level

- Relative pressure of a sound determined by the pressure of the sound and the threshold of hearing.
- Depends on the amplitude of the wave
- Measured in decibels (dB)
- 0db is the lowest level sound that people can hear
- $0\text{dB} = 2 \times 10^{-5} \text{ N/m}^2$
- $20\text{dB} = 2 \times 10^{-4} \text{ N/m}^2$
- $40\text{dB} = 2 \times 10^{-3} \text{ N/m}^2$
- Every 20db is a 10x difference in pressure

3

Intensity

- Rate at which the energy of the sound wave strikes a unit area
- The higher the intensity, the louder the sound.

$$I = \frac{P}{4\pi R^2}$$

Where P is the power in watts and R is the distance from the source.

4

Sample Problem

- Calculate the intensity of an electric guitar's amplifier at a distance of 5.0m if its power output is 100 W.

$$I = \frac{P}{4\pi R^2}$$

$$I = \frac{100}{4\pi(5)^2}$$

$$I = \frac{100}{314.15}$$

$$I = 0.318 \frac{W}{m^2}$$

5

Sample Problem #2

- Calculate the power of a sound with an intensity of 0.0089 W/m² at a distance of 25.0m.

$$I = \frac{P}{[4\pi(R)^2]}$$

$$0.0089 = \frac{P}{[4\pi(25)^2]} \quad P = 69.9 W$$

$$0.0089 = \frac{P}{[7854]}$$

6

Forced Vibrations and Resonance

- Forced Vibrations
 - The forced transfer of a vibration to other media (Ex: guitar)
- Resonance
 - Occurs when the forced vibration matches the natural frequency of an object
- Resonance can produce a standing wave, creating a louder noise or other results...

<https://www.youtube.com/watch?v=uVvnw3MfxkI>

<https://www.youtube.com/watch?v=rRZT7xO5KN4>

<https://www.youtube.com/watch?v=EX8y40QkM>