



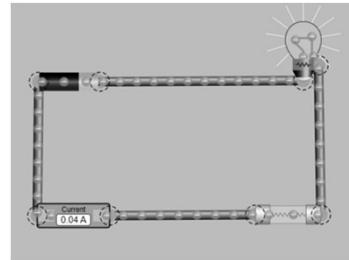
# Series Circuits

1



## Circuits

- Electrical Circuit


- A set of electrical components that are connected to provide one or more paths for moving charges
- A closed electrical loop in which charge can flow
- Must have a high potential (Voltage) and low potential (Voltage) for current to flow

2

# Circuit Safety

- **Short Circuit**

- A circuit with little or no resistance.



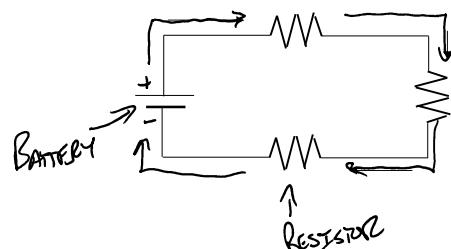
- **Fuse**

- A piece of metal that melts when the current in the circuit becomes too great.

- **Circuit Breaker**

- A resettable switch that opens when the current in a circuit reaches a set value.

3


# Voltage and Circuits

- Voltage is the energy per unit charge supplied by the source of electrical current.
- Any battery or generator is a voltage source.
- A voltage source must be connected to a circuit to produce a current in the circuit.
- Each element in a circuit “uses up” some of the voltage supplied. This is called a voltage drop.

4

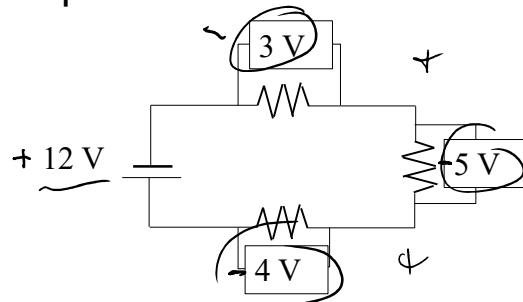
## Series Circuits

- Circuits in which there is only one path for the current to take.



5

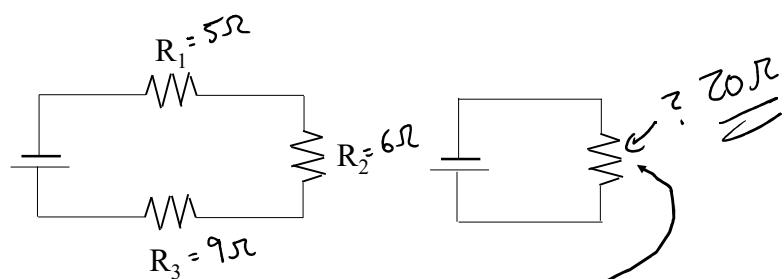
## General Rules for Series Circuits


- The current in all parts of the circuit is the same (Constant Current)
- The sum of all the ~~separate~~ voltage drops is equal to the applied voltage (Voltage adds up)
- The total resistance in a series circuit is equal to the sum of the individual resistances
- Ohm's Law can be used for any resistor, or for the entire circuit.

$$V = IR$$

6

## Kirchoff's Second Law


- The sum of all changes in potential in a complete circuit is equal to zero



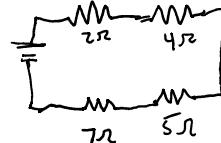
7

## Equivalent Resistance (Series)

- A single resistor that can be placed in a circuit in place of all other resistors in the circuit



$$R_{\text{eq(series)}} = R_1 + R_2 + R_3 + \dots$$

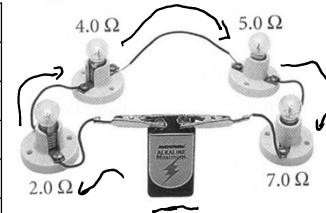

8

## Sample Problem

- A 9.0 V battery is connected to four light bulbs, as shown in the picture. Draw a schematic of the circuit.

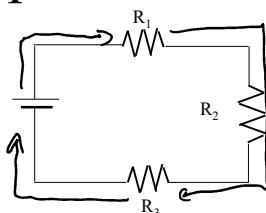
- What is the equivalent resistance in the circuit?

$$2\Omega + 4\Omega + 7\Omega + 5\Omega = 18\Omega$$




- What is the current in the circuit?

$$V = IR \Rightarrow I = \frac{V}{R} = \frac{9V}{18\Omega} = 0.5A$$


- What is the voltage dropped across each light?

|                | V    | I    | R   |
|----------------|------|------|-----|
| Batt           | 9V   | 0.5A | 18Ω |
| R <sub>1</sub> | 2V   | 0.5  | 2Ω  |
| R <sub>2</sub> | 4V   | 0.5  | 4Ω  |
| R <sub>3</sub> | 5V   | 0.5  | 5Ω  |
| R <sub>4</sub> | 3.5V | 0.5  | 7Ω  |



9

## Sample Problem



|                | V       | I     | R   |
|----------------|---------|-------|-----|
| Batt           | 144.0 V | 3.0 A | 48Ω |
| R <sub>1</sub> | 72V     | 3.0A  | 24Ω |
| R <sub>2</sub> | 27V     | 3.0 A | 9Ω  |
| R <sub>3</sub> | 45V     | 3.0 A | 15Ω |

$$45V + 72V + 27V = 144V$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

$$48\Omega = 24\Omega + 15\Omega + 9\Omega$$

10