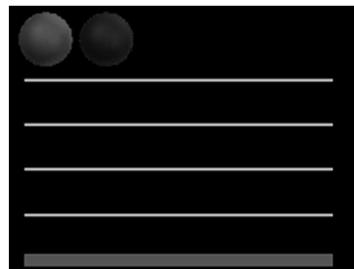


Projectile Motion

1


Projectile Motion

- **Projectiles**
 - > objects given an initial velocity that then move under the force of gravity
- **Trajectory**
 - > the path followed by a projectile
 - > The path is a curve called a parabola

2

1

Independence of Dimensions

Why do both balls hit at the same time?

3

Independence of Dimensions

- Since the horizontal and vertical motion of an object are independent of each other, the motion equations can be used to determine the exact position of a projectile.
- However, we must first distinguish between the x and y components of any vectors.

4

Independence of Dimensions

- With no acceleration in the horizontal direction, we can find the horizontal position by using the equation:
 - >
- The velocity in the horizontal direction will not change, therefore:
 - >

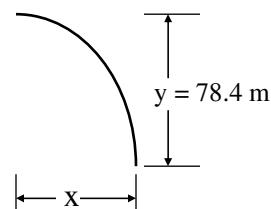
5

Independence of Dimensions

- Since there is acceleration (gravity) in the vertical direction the position can be found using the equation:
 - >
- The acceleration causes a change in velocity in the vertical direction. We can find the final velocity using the equations:
 - >
 - >

6

Projectile Problem

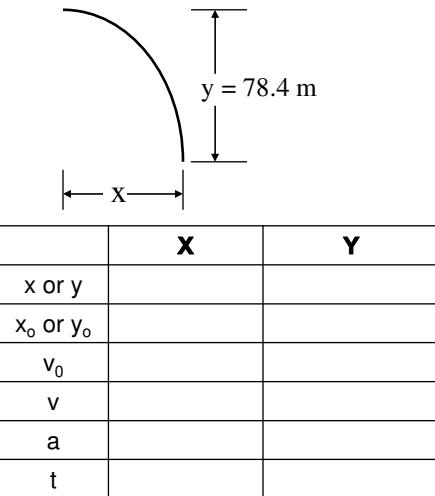

- A stone is thrown horizontally at a speed of 15 m/s from the top of a cliff 78.4 m high.
 - > How long is the stone in the air?
 - > How far from the cliff does the stone land?
 - > What are the horizontal and vertical components of the velocity just before the stone hits the ground?

	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

7

Projectile Problem

- Find the time



	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

8

Projectile Problem

- Find the horizontal distance

9

Projectile Problem

- Find the components

10

Horizontal Projectile Problem #2

- Jordan throws a dart horizontally at a dart board 2.2 meters away. If the initial velocity of the dart is 3.6 m/s, how far does the dart drop before hitting the board?

	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

11

Horizontal Projectile Problem #2

	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

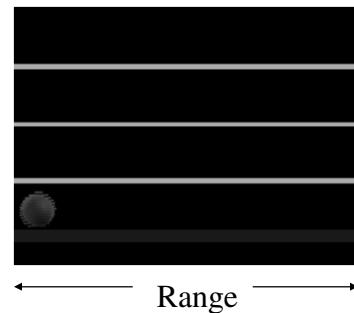
12

Horizontal Projectile Problem #3

- You are at the top of a 3.5 m high stair case. A friend at the bottom of the stairs forgot her pencil and asks you for one. You notice that she is 8.5 m horizontally away from you. What horizontal velocity should you throw the pencil at to ensure that she gets the pencil?

	x	y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

13


Horizontal Projectile Problem #3

	x	y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		

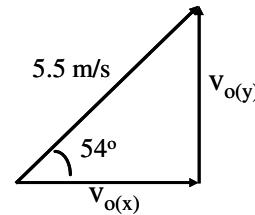
14

Projectiles Launched at an Angle

- When projectiles are launched at an angle, they are given an initial horizontal and vertical velocity.
- The horizontal distance the projectile travels is called the range.

15

Angled Launch Problem #1

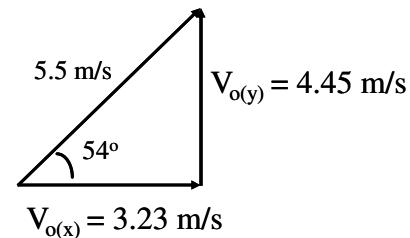

- A ball is thrown with a initial velocity of 5.5 m/s at an angle of 54° . Find:
 - > the time in the air.
 - > how high the ball went.
 - > what the range was.

	x	y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{max}		
Δy_{max}		

16

Angled Launch Problem #1

- Find components

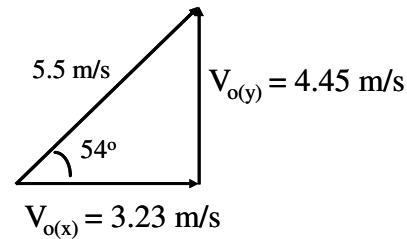


	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{\max}		
Δy_{\max}		

17

Angled Launch Problem #1

- Find time

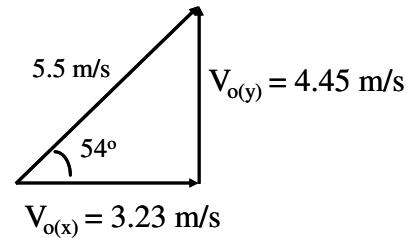


	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{\max}		
Δy_{\max}		

18

Angled Launch Problem #1

- Find Max height



	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{\max}		
Δy_{\max}		

19

Angled Launch Problem #1

- Find range

	X	Y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{\max}		
Δy_{\max}		

20

Angled Launch Problem #2

- An arrow is shot into the air at 7.5 m/s, at an angle of 36° . Find:
 - > the time in the air.
 - > where the target should be placed, assuming it is at the same height as the arrow was shot.
 - > the maximum height the arrow reaches.

	x	y
x or y		
x_0 or y_0		
v_0		
v		
a		
t		
t_{\max}		
Δy_{\max}		