

Gravitational Potential Energy

- The energy an object has because of height above the earth.

$$U_g = mgh$$

- m = mass
- h = height
- g = 9.8 m/s²
- A scalar quantity

2

Potential Energy - Example

- You lift a 2.00 kg textbook from the floor to a 2.10 m high shelf.
 - What is the book's gravitational potential energy at that height?

$$\begin{aligned}U_g &= mgh \\U_g &= (2.00)(9.8)(2.10) \\U_g &= 41.2 J\end{aligned}$$

3

Kinetic Energy – Variable Relationships

- Determine the effect of the changing variables on variable that remains constant
 - What happens to the kinetic energy, if the velocity remains constant while you triple the mass?

$$K = \frac{1}{2}mv^2$$

$$K = (1)(1)(1)^2 \\ = 1$$

$$K = (1)(3)(1)^2 = 3 \times \text{greater}$$

- What happens to the kinetic energy, if the mass remains constant while you double the velocity?

$$K = (1)(1)(2)^2 = 4 \times \text{greater}$$

- The kinetic energy is 5 J. What would be the new kinetic energy if the mass remains the same, while you quadruple the velocity? $K = (1)(1)(4)^2 = 16 \times \text{greater}$

$$5(16) = 80 \text{ J}$$

4

Potential Energy – Variable Relationships

- Determine the effect of the changing variables on variable that remains constant
 - What happens to the potential energy, if the mass remains constant while you triple the height?

$$U_g = mgh \\ U_g = (1)(1)(1) \\ = 1$$

$$U_g = (1)(1)(3) = 3 \times \text{greater}$$

- What happens to the potential energy, if the height remains constant while you double the mass?

$$U_g = (2)(1)(1) = 2 \times \text{greater}$$

- The potential energy is 7 J. What would be the new potential energy if the mass is doubled, while you quadruple the height? $U_g = (2)(1)(4) = 8 \times \text{greater}$

$$7(8) = 56 \text{ J}$$

5