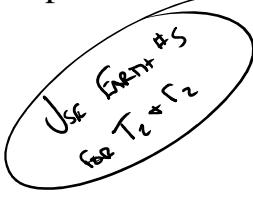

Planetary Motion

Kepler's Laws of Planetary Motion & Newton's Law of Universal Gravitation

1

Kepler's Three Laws of Planetary Motion

- ◆ 1st Law
 - All planets move in elliptical orbits with the sun at one focus
- ◆ 2nd Law
 - A line joining the planet to the sun sweeps out equal area in equal time.
 - Planets move faster when closer to the sun



2

Kepler's Three Laws of Planetary Motion

- ♦ 3rd Law

- For any objects orbiting the same planet or star:

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{r_1}{r_2}\right)^3$$

Earth's Period around the sun = 365.25 days ~~or 1 year~~

Average distance from the sun to the Earth = 1.5×10^{11} m or 1 AU

List of distances can be found in Table 8 – 1 on page 178

3

Example Problem

- ♦ A small unnamed planet was discovered 1.2×10^{12} m from the sun. How long would it take this unnamed planet to orbit the sun?

$$\left(\frac{T_p}{T_{\text{Earth}}}\right)^2 = \left(\frac{r_p}{r_{\text{Earth}}}\right)^3$$

$$\frac{T_p^2}{(1 \text{ year})^2} = \left(\frac{1.2 \times 10^{12}}{1.5 \times 10^{11}}\right)^3$$

$$T_p^2 = (8)^3$$

$$T_p^2 = 512$$

$$T_p = 22.6 \text{ years}$$

4

2

Example Problem #2

- ♦ If it takes 686.95 days for Mars to revolve around the sun, what is distance in astronomical units of Mars from the sun?

$$\left(\frac{T_m}{T_E}\right)^2 = \left(\frac{r_m}{r_E}\right)^3$$
$$r_m = (3.54)^{1/3}$$
$$\left(\frac{686.95}{365.25}\right)^2 = \frac{(r_m)^3}{(1 \text{ AU})^3}$$
$$r_m = 1.52 \text{ AU}$$
$$3.54 = r_m^3$$

5

Newton's Law of Gravity

- ♦ States that there is an attractive force between all masses.

$$F = G \frac{m_1 m_2}{d^2}$$

For Earth,
= 9.8 m/s² (g)

$$G = 6.67 \times 10^{-11}$$

m_1 and m_2 = mass in kg

d = distance between objects

6

Example Problem #1

- ◆ A 15 kg person and a 32 kg person are 75 centimeters apart. What is the gravitational force between the two people?

$$F = \frac{6.67 \times 10^{-11} (15)(32)}{(0.75)^2} = 5.69 \times 10^{-8} \text{ N}$$

Answer: $F = 5.69 \times 10^{-8} \text{ N}$

7

Example Problem #2

- ◆ There is an attractive force of $8.15 \times 10^{-7} \text{ N}$ between two people who are seated 0.60 m apart. If one person weighs 80.0 kg, what is the mass of the other person?

$$8.15 \times 10^{-7} = \frac{6.67 \times 10^{-11} (80)(m)}{(0.6)^2}$$
$$8.15 \times 10^{-7} = (1.48 \times 10^{-8})m$$
$$\frac{8.15 \times 10^{-7}}{1.48 \times 10^{-8}} = m$$
$$m = 55.0 \text{ kg}$$

$$m_2 = 55.0 \text{ kg}$$

8