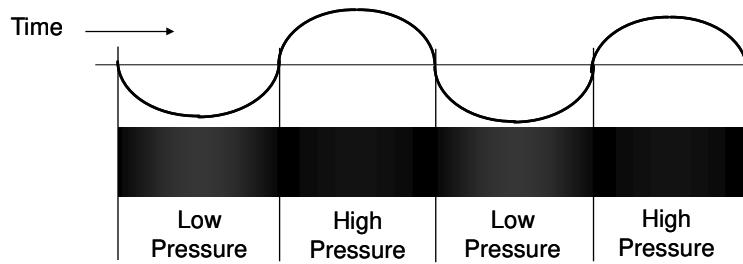
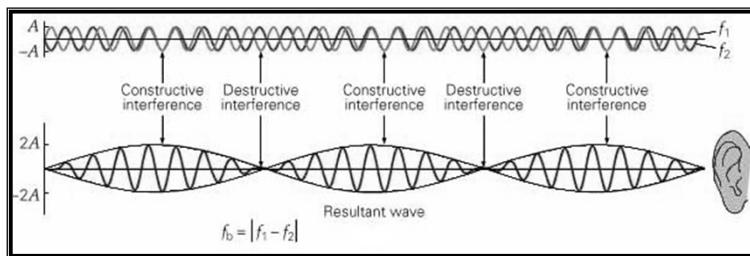


Sound Waves


The Physics of Music

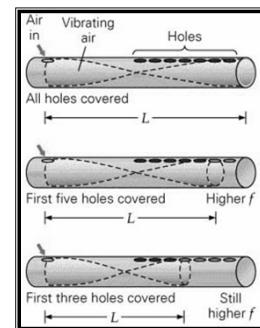
1

Sources of Sound


- Any vibrating object can produce a sound
- The vibrations move molecules in the air creating pressure differences creating sound.

2

Beats


- Pulsing variation of loudness
- The number of beats per second = the difference between source frequencies
- Humans can detect beat frequencies up to approximately 7Hz
- Over 7Hz we hear a complex wave

3

Resonance

- How it works
 - Certain frequencies will produce standing waves in a given length of pipe or string
 - These standing waves produce the sound we hear in musical instruments.
 - By changing the length of the string or pipe, we can change the frequency that resonates

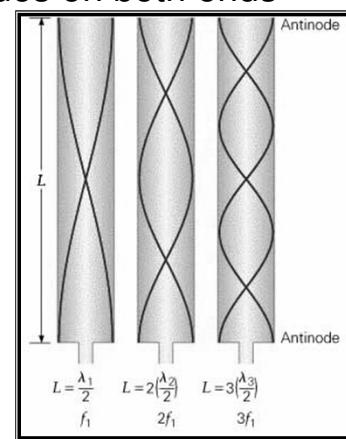
4

Resonance

- Fundamental Frequency
 - the lowest frequency of vibration of a standing wave
- Harmonics
 - whole number multiples of the fundamental frequency

Note on musical vocabulary:

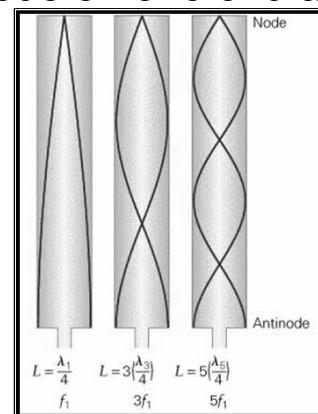
- The fundamental is also the first harmonic


5

Open-pipe resonator

- Resonating tube open at both ends
- Produces a standing wave with antinodes on both ends
- Minimum length is $1/2 \lambda$
or $\lambda = 2L$

Notice all harmonics
resonate in a open
tube



6

Closed pipe resonator

- Resonating tube with one end closed
- Produces a standing wave with a node on one end and an antinode on the other
- Minimum length is $1/4 \lambda$
or $\lambda = 4L$

Notice only odd harmonics resonate in a closed tube

7

Harmonics Sample Problem

- A tuning fork produces resonance when held above a 2.45 m long pipe that is open at both ends. Assuming the speed of sound is 345 m/s, what is the frequency of the tuning fork? What are the next two frequencies that would resonate in the same tube?

$$\text{Open} \Rightarrow \lambda = 2L \Rightarrow \text{All Harmonics}$$
$$\lambda = 2(2.45) = 4.9 \text{ m}$$

$$v = \lambda f$$
$$345 = 4.9 (f)$$
$$f = 70.4 \text{ Hz}$$
$$f_2 = 70.4 \times 2 = 140.8 \text{ Hz}$$
$$f_3 = 70.4 \times 3 = 211.2 \text{ Hz}$$

8

Harmonics Sample Problem

- A 392 Hz tuning fork is used with a closed pipe resonator. The length is 0.32 m when the loudest sound is produced. What is the speed of sound? What is the temperature of the air during the experiment?

$$\text{Open} \Rightarrow \lambda = 4L$$
$$\lambda = 4(0.32) = 1.28 \text{ m}$$
$$v = \lambda f$$
$$= 1.28(392)$$
$$= 501.76 \text{ m/s}$$
$$v = 331 + .6T_c$$
$$501.76 = 331 + .6T_c$$
$$170.76 = .6T_c$$
$$284^\circ\text{C} = T_c$$