

Objects Thrown Into the Air

1

From the lab...

- Gravity acts on all falling (and rising) objects.
- Down is considered to be in the negative direction. Up is positive.
- Acceleration due to gravity is _____.
- The size of the initial and final velocities of the object are the same but are _____ in direction.
(initial = positive, final = negative)
- The velocity at the top of its motion is _____.
- It take the _____ amount of time to go up as it does to come back down.

2

The Equations

- When acceleration is constant, we can find other information about the object's motion using the following equations:

$$v = v_o + at$$

$$v^2 = v_0^2 + 2a\Delta x$$

$$\Delta x = v_o t + \frac{1}{2} a t^2$$

3

Practice Problem #1

- You throw a stone into the air with a velocity of 18.0 m/s.
 - What is the maximum height that the stone reaches?
 - How long does it take to hit the ground?

	End	Max. Height
v		
v_o		
a		
t		
Δx		

4

Practice Problem #2

- A shirt is shot straight up out of a t-shirt cannon. It reaches a maximum height of 15 m.
 - What is the velocity of the shirt as it comes out of the cannon?
 - How long does it take for the shirt to hit the ground?

	End	Max. Height
v		
v_0		
a		
t		
Δx		