

Objects Thrown Into the Air

1

Objects Thrown into the Air

- Gravity acts on all falling (and rising) objects.
- Down is considered to be in the negative direction. Up is positive.
- Acceleration due to gravity is -9.8 m/s^2 .
- The size of the initial and final velocities of the object are the same but are opposite in direction.
(initial = positive, final = negative)
- The velocity at the top of its motion is 0 m/s .
- It takes the same amount of time to go up as it does to come back down.

2

The Equations

- When acceleration is constant, we can find other information about the object's motion using the following equations:

$$v = v_o + at \quad v^2 = v_o^2 + 2a(x - x_o)$$

$$x = x_o + v_o t + \frac{1}{2}at^2$$

3

Practice Problem #1

- You throw a stone into the air with a velocity of 18.0 m/s.

- What is the maximum height that the stone reaches?

$$v^2 = v_o^2 + 2a(x - x_o)$$

$$0^2 = 18^2 + 2(-9.8)(x - 0)$$

$$0 = 324 + (-19.6)x$$

$$x = 16.5 \text{ m}$$

- How long does it take to hit the ground?

$$v = v_o + at$$

$$-18 = 18 + (-9.8)t$$

$$-36 = -9.8t$$

$$t = 3.67 \text{ s}$$

$$v = v_o + at$$

$$0 = 18 + (-9.8)t$$

$$-18 = -9.8t$$

$$t = 1.83 \text{ s}$$

	End	Max. Height
v	-18 m/s	0 m/s
v _o	18 m/s	18 m/s
a	-9.8 m/s ²	-9.8 m/s ²
t	3.67	
x		16.5 m
x _o	0	0

4

Practice Problem #2

- A shirt is shot straight up out of a t-shirt cannon. It reaches a maximum height of 15 m.

- What is the velocity of the shirt as it comes out of the cannon?

$$v^2 = v_0^2 + 2(a)(x - x_0)$$

$$0^2 = v_0^2 + 2(-9.8)(15 - 0)$$

$$0^2 = v_0^2 - 294$$

$$v = 17.15 \text{ m/s}$$

- How long does it take for the shirt to hit the ground?

$$v = v_0 + at$$

$$-17.15 = 17.15 + (-9.8)t$$

$$-34.3 = -9.8t$$

$$t = 3.5 \text{ s}$$

	End	Max. Height
v	-17.15	0 m/s
v_0	17.15	17.15
a	-9.8 m/s ²	-9.8 m/s ²
t		
x		15 m
x_0	0	0