

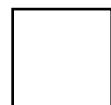
Newton's Laws Notes

- **Force**

- Definition: _____

- Vector or Scalar
- Unit: _____
- Two Types
 - Contact Forces
 - Examples: _____, _____, _____,
 - Long Range Forces
 - Examples: _____, _____, _____,

- Free Body Diagrams (FBD)

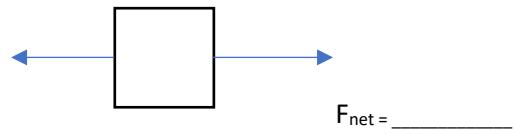
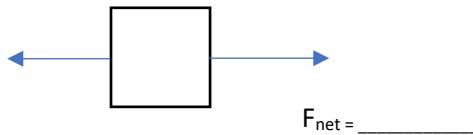


Horizontal

Vertical

- Draw and label a FBD for an object on the floor with no applied force.

- Draw and label a FBD for an object falling with air resistance.

- Draw and label a FBD for an object on a frictionless table being pulled to the left with 40 N and to the right at 60 N.

- Net Force

- Definition: _____

- Result 1 : _____
- Result 2 : _____

- Equilibrium

- The state of an object when there is no net force acting on it. $F_{\text{net}} = 0$
- An object in equilibrium will be at _____ or move at a _____.

- Newton's 1st Law

- Law states: _____

- Also called the _____

- Inertia

- Definition: _____
- What causes it? _____

- Newton's 2nd Law

- Law states: any net force applied to an object will cause the object to accelerate in the direction of the force.
- Equation: _____

- Newton's 2nd Law Sample

- The net external force on a car is 14000 N south. If the car has a mass 2200 kg, what is the acceleration of the car?

- Weight

- Definition: _____
- Equation: _____

- Newton's Third Law

- Definition: _____
