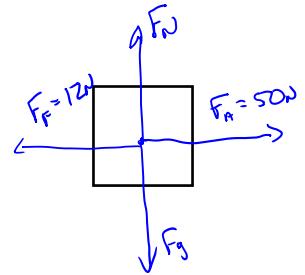


Newton's Laws – Sample Problems

- A 25 kg box is sitting on a table. A 50 N force is applied to the box while a frictional force of 12 N is acting on it.


- Draw a FBD for the box

- Write the equation for the net force in the vertical direction on the box:

- $F_{\text{net}(y)} = F_n - F_g$

- What is the gravitational force (weight) of the box?

$$F_g = mg = (25 \text{ kg})(9.8) = 245 \text{ N}$$

- Is there a net force acting on the box in the vertical direction? How do you know?

$$F_{\text{NET}_y} = 0 \Rightarrow \text{No Acceleration in VERTICAL DIRECTION}$$

- Use the equation you wrote above to find the normal force (F_n) acting on the box

$$0 = F_n - F_g \Rightarrow 0 = F_n - 245 \text{ N} \quad F_n = 245 \text{ N}$$

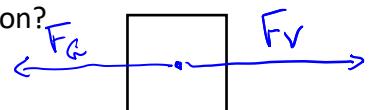
- Write the equation for the net force in the horizontal direction on the box:

- $F_{\text{net}(x)} = F_A - F_f$

- What is the net force acting on the box in the horizontal direction?

$$F_{\text{NET}_x} = 50 - 12 = 38 \text{ N}$$

- What is the acceleration of the box?


$$F = ma \quad 38 \text{ N} = 25 \text{ kg} \cdot a \quad a = 1.52 \text{ m/s}^2$$

- Victoria and George are fighting to get the last Playstation 5 (mass = 1.2 kg) on Black Friday. Victoria pulls with a force of 14 N that causes the Playstation to accelerate toward her at a rate of 2.3 m/s².

- Draw a FBD for Playstation

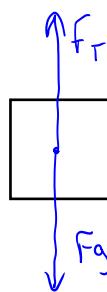
- What is the net force acting on the Playstation in the horizontal direction?

$$F_{\text{NET}} = ma = 1.2(2.3) = 2.76 \text{ N}$$

- Write the equation for the net force in the horizontal direction on the Playstation:

- $F_{\text{net}(x)} = F_v - F_g$

- What is the George's applied force?


$$2.76 = 14 - F_g$$

$$F_g = 11.24 \text{ N}$$

- An 1500 kg elevator moved upward by its motor. The acceleration of the elevator is 1.7 m/s².

- Draw a FBD for elevator
- What is the net force acting on the elevator in the horizontal direction?

$$F_{NETx} = 0$$

- What is the gravitational force (weight) on the elevator?

$$F_g = mg = 1500(9.8) = 14,700 \text{ N}$$

- What is the net force acting on the elevator in the vertical direction?

$$F_{NET} = MA = 1500(1.7) = 2550 \text{ N}$$

- Write the equation for the net force in the vertical direction on the elevator:

- $F_{NET(y)} = F_T - F_g$

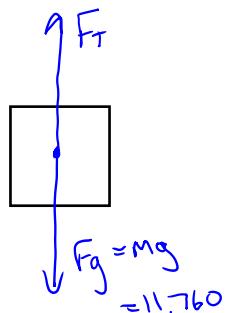
- What is the tension in the cable pulling the elevator upward?

$$2550 = F_T - 14,700 \text{ N}$$

$$F_T = 2550 + 14,700$$

$$F_T = 17,250 \text{ N}$$

- A crane is lowering a 1200 kg air conditioning unit from the top of the school. The unit is accelerating at a rate of 0.45 m/s².


- Draw a FBD for air conditioning unit

$$\begin{aligned} F_{NET} &= MA \\ &= 1200(-0.45) \end{aligned}$$

- What is the tension in the crane's cable?

$$F_g =$$

$$\begin{aligned} F_{NET} &= F_T - F_g \\ -540 &= F_T - 11,760 \quad F_T = 11,220 \text{ N} \\ F_g &= mg \\ &= 11,760 \end{aligned}$$

- A 1 N force pushes a 1 kg mass. What is the acceleration of the mass?

$$F = MA \Rightarrow 1 \text{ N} = 1 \text{ kg} (A)$$

$$1 \text{ m/s}^2 = A$$

- What would happen to the acceleration if you tripled the force?

$$3 = 1A$$

$$A = 3 \times \text{LARGER}$$

- What would happen to the acceleration if you doubled the mass?

$$1 = 2A$$

$$A = \frac{1}{2} \text{ AS LARGE}$$

- What would happen to the acceleration if you doubled the force and doubled the mass?

$$2 = 2A$$

$$A = 1 \times \text{LARGER} \Rightarrow \text{SAME SIZE}$$