

Momentum

and Impulse

1

Momentum depends on

-
-

Specifically

or

2

1

Momentum

-
-
-
-

3

Impulse

-

- **Impulse – momentum theorem:**
 - The impulse exerted on a body is equal to the change in the object's momentum
$$\text{Impulse} = \Delta p$$
$$F\Delta t = \Delta p$$
$$F\Delta t = mv_f - mv_i$$
$$\Delta p = mv_f - mv_i$$

4

Changing an Object's Momentum

- How do we do it?
 -
- What if we need to stop something quickly?
 -
- What if there is a force limitation? (ie. Pain)
 -
- How do we cause a large change in momentum?
 -

5

Airbags

- How does an air bag use this concept of impulse to decrease the amount of force on your body?

6

Momentum/Impulse Example

- A 2250 kg car traveling to the west is slowed uniformly from 20.0 m/s with a force of 8437.5 N for 4.00 s.
 - What is the change in the car's momentum (or its impulse)?
 - What is the speed of the car after the brakes are applied?

7

Given: $m =$ $v_i =$

$F =$ $t =$

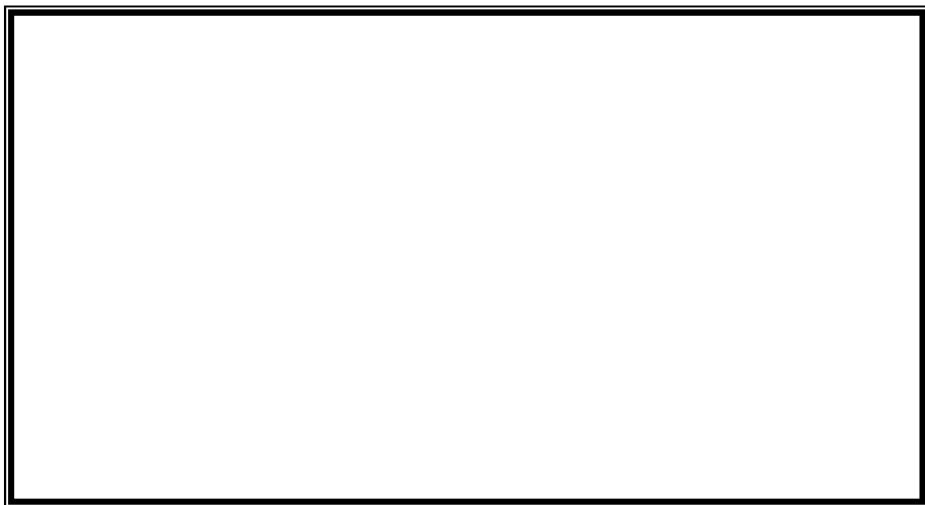
Equations:

8

Momentum/Impulse Example 2

- A 0.45 kg volleyball travels at 4.0 m/s over the net. You jump up and hit the ball back at a velocity of 7.0 m/s. If the contact time is 0.04 s,
 - What is the change in the ball's momentum?
 - What is force exerted on the ball?

9


Given:

$m =$

$v_i =$

$t =$

$v_f =$

10