

Name _____ Date _____
Teacher _____ Period _____

Physics - “Measuring Light” Notes

Speed of Light

What is the speed of light? $c =$ _____

Radiant Energy

Radiant energy is emitted by _____ in the environment.

The amount of radiant energy depends on the _____ of the wave.

Equation: $E_R =$

where $h =$

Example: How much radiant energy is produced from green light ($\lambda = 510$ nm)?

Key Terms:

candela	
luminous	
illuminated	
luminous flux	
lumen	
luminous intensity	
illuminance	
transparent	
transluscent	
opaque	

Light Brightness

As we move away from a light source, the light looks _____

This is because the light has to illuminate a larger _____

There is a _____ relationship between the brightness of a light and the distance from it.

For example, if you move two times farther away from the light it will appear _____ as bright. If you move four times farther away from the light it will appear _____ as bright.

Equation: $E =$

Sample Problem 1:

A 500 lm light source is projected on a wall 0.5 meters away. What is the illumination on the wall?

Sample Problem 2:

A light is shown on desk. The illumination on the desk is 230 lm/m². The light is 35 cm away from the desk. What is the luminous flux of the light?

What is its luminous intensity?