

Magnetism

What is it and how does it work?

1

Magnetic Materials

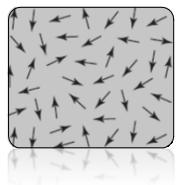
- Ferromagnetic
 - Strongly _____ to magnetic materials
(ex: iron, steel, cobalt)
- Paramagnetic
 - Very slightly _____ to magnetic materials
(ex: wood, aluminum, platinum)
- Diamagnetic
 - Weakly _____ by magnetic materials
(ex: gold, zinc, sodium chloride)

3

Magnetic Poles

- All magnets have two poles
 - _____ do not exist.
- North pole points toward the north, south towards the south.
- Like poles _____, unlike _____.
- Earth's magnetic North is actually geographic _____.

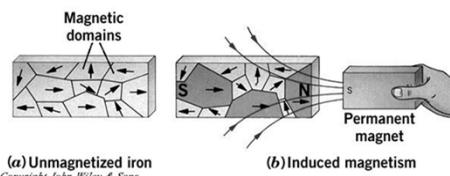
2


Cause of Magnetism

- Magnetism is caused by a _____ in motion
- Electrons in motion
 - Revolving around the _____
 - _____ around its own axis
 - Usually occur in pairs, _____ each other
- Magnetic materials have an _____ of electrons in orbits and spins.

4

Magnetic Domains


- Electron motion occurs in microscopic magnetic regions called _____.
- Domains are oriented in _____ directions neutralizing any overall magnetic field.

5

Creating Magnets

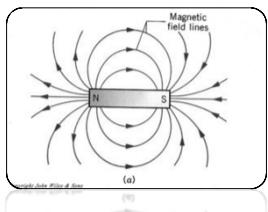
- When a _____ material is placed in an magnetic field, the domains _____, magnetizing the material.

6

Types of Magnets

- Permanent magnets
 - If the domains _____ after the magnetic field is removed, the material is said to be permanently magnetized.
- Temporary magnets
 - If the domains _____ after the magnetic field is removed, the material is said to be a temporary magnet.

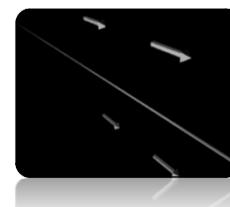
7


“Neutralizing” Magnets

- Heating a ferromagnetic material to a specific temperature _____ the domain regions resulting in a paramagnetic material.
 - This temperature is known as the _____ point.

8

Magnetic Fields


- The lines of magnetic flux are drawn away from _____ and towards the _____
- The strength of a magnetic field is shown by the _____ of magnetic field lines in a certain area.
- More Magnetic Field Lines = Stronger Magnetic Field

9

Electromagnetism

- Current passing through a wire _____ a magnetic field.
- Discovered by Oersted, when a _____ was placed by a current carrying wire.

10

Magnetic Field Strength

- To determine the magnetic field strength (B) along a wire, we use:

Where

$$k = 1 \times 10^{-7} \text{ N/A}^2$$

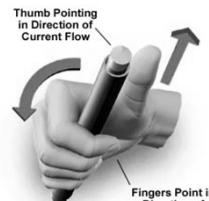
I = current in the wire (A)

r = distance from wire (m)

B = magnetic field strength (T)

11

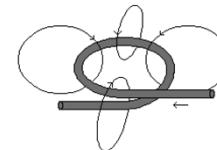
Example Problem


- Calculate the current passing through a wire if a magnetic field strength of $8.89 \times 10^{-5} \text{ T}$ occurs at a distance of 0.135 m from the wire?

Answer: I = 60 A

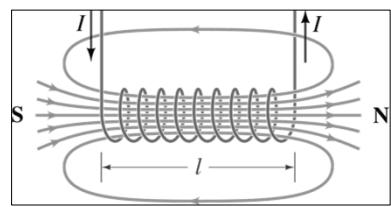
12

First Right Hand Rule


- Used to determine the _____ of the magnetic field in a current carrying wire.
- Grasp the conductor with your right hand with your _____ pointing in the direction of the current. Your fingers will circle in the direction of the magnetic field.

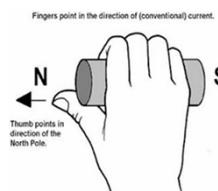
13

Loops of Wire


- If we bend a current carrying wire into a loop, we find that the magnetic field along the _____ of the loop faces in one direction, producing a magnetic field pointed in that direction.

14

Multiple Loops


- By _____ the number of loops, the magnetic field can be increased.

15

Second Right Hand Rule

- Grasp the coil with your right hand with your _____ circling the coil in the direction of the current. The extended thumb will point in the direction of the north pole of the core.

16