

Electric Fields – Part 1

The Electric Field

- Electric Field (E-field)
 - An area around any _____ causing an electric force on other charges around it.
- Michael Faraday
 - developed the concept of an _____ surrounding a charge in all directions. If a second charge is placed in the field, it will _____ with the field at that point

1

Electric Field Intensity

- To find the intensity of an electric field we use :

$$E = \frac{F}{q}$$

- q is usually a (+) test charge
- Units of N/C

2

Electric Field Sample Problem

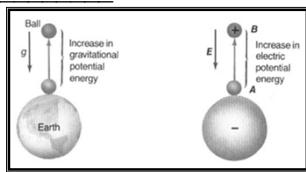
- What is the electric field that is acting on a positive 4.0×10^{-5} C charge if it experiences a 0.60 N force?

Answer: 1.5×10^4 N/C

3

Electric Field Sample Problem

- What is the force applied to a 5.0×10^{-9} C charge by a 1500 N/C electric field?


Answer: 7.5×10^{-6} N repulsive force

4

Electric Fields – Part 1

Applications of E-Fields

- Electric potential energy
 - To pull unlike charges away from each other, you must do _____
 - Like gravitational PE, when you do work on an object, you increase its _____

5

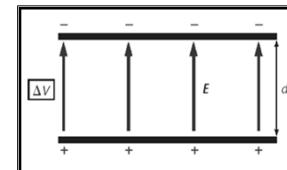
Electric Potential Difference

- Commonly known as _____
- Units of J/C or Volt (V)
- find using :

$$\Delta V = \frac{W}{q} \text{ or } \frac{\Delta PE}{q}$$

6

Applications of E-Fields


- Electric potential energy
 - Like Gravitational PE, Electric PE is based on an arbitrary reference point
 - We are mainly concerned with the differences in potential energy
 - Voltmeters are used to find potential differences

7

Electric Potential in a uniform E-Field

- The potential difference between two points in an electric field depends on
 - the E-field strength
 - the distance between the points
- Such that

$$\Delta V = Ed$$

8

Electric Fields – Part 1

Sample Problem

- Two charged parallel plates are 0.04 m apart. The electric field between them is 625 N/C.
 - What is the electric potential difference between the plates?
 - What work will you do to move a proton from the negative plate to the positive plate?

9

Sample Problem (cont.)

- $d = 0.04 \text{ m}$ $E = 625 \text{ N/C}$

Answer: 25 V, $4.0 \times 10^{-18} \text{ J}$

10