

Electric

Fields

Part One

1

The Electric Field

- **Electric Field (E-field)**
 - An area around any electrical charge causing an electric force on other charges around it.
- **Michael Faraday**
 - developed the concept of an e-field surrounding a charge in all directions. If a second charge is placed in the field, it will interact with the field at that point

2

Electric Field Intensity

- To find the intensity of an electric field we use :

$$E = \frac{F}{q}$$

- q is usually a (+) test charge
- Units of N/C

3

Electric Field Sample Problem

- What is the electric field that is acting on a positive 4.0×10^{-5} C charge if it experiences a 0.60 N force?

$$E = \frac{F}{q} = \frac{.6}{4 \times 10^{-5}} = 15,000 \text{ N/C}$$

Answer: $1.5 \times 10^4 \text{ N/C}$

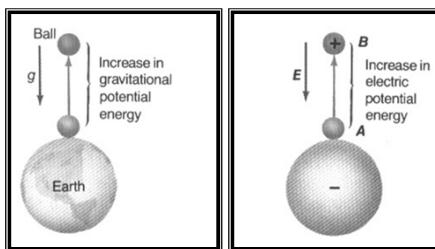
4

Electric Field Sample Problem

- What is the force applied to a 5.0×10^{-9} C charge by a 1500 N/C electric field?

$$E = \frac{F}{q} \Rightarrow 1500 = \frac{F}{5 \times 10^{-9}}$$

$$(1500)(5 \times 10^{-9}) = F$$


$$F = 7.5 \times 10^{-6} \text{ N} \Rightarrow (+) \Rightarrow \text{REPULSIVE}$$

Answer: 7.5×10^{-6} N repulsive force

5

Applications of E-Fields

- Electric potential energy
 - To pull unlike charges away from each other, you must do work
 - Like gravitational PE, when you do work on an object, you increase its energy

6

Electric Potential Difference

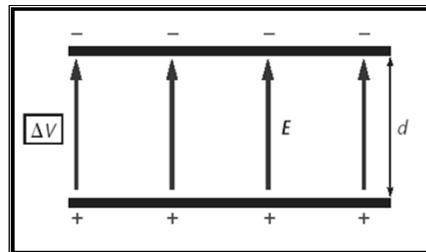
- Commonly known as voltage
- Units of J/C or Volt (V)
- find using :

$$\Delta V = \frac{W}{q} \text{ or } \frac{\Delta PE}{q}$$

7

Applications of E-Fields

- Electric potential energy
 - Like Gravitational PE, Electric PE is based on an arbitrary reference point
 - We are mainly concerned with the differences in potential energy
 - Voltmeters are used to find potential differences


8

Electric Potential in a uniform E-Field

- The potential difference between two points in an electric field depends on
 - the E-field strength
 - the distance between the points

Such that

$$\Delta V = Ed$$

9

Sample Problem

- Two charged parallel plates are 0.04 m apart. The electric field between them is 625 N/C.
 - What is the electric potential difference between the plates?
 - What work will you do to move a proton from the negative plate to the positive plate?

10

Sample Problem (cont.)

■ $d = 0.04 \text{ m}$ $E = 625 \text{ N/C}$

$$\begin{aligned}V &= Ed \\&= (625)(.04) \\&= 25 \text{ V}\end{aligned}$$

$$\begin{aligned}V &= \frac{W}{q} \\ZS &= \frac{W}{1.6 \times 10^{-19}} \\W &= 25(1.6 \times 10^{-19}) \\&= 4 \times 10^{-18} \text{ J}\end{aligned}$$

Answer: 25 V, $4.0 \times 10^{-18} \text{ J}$