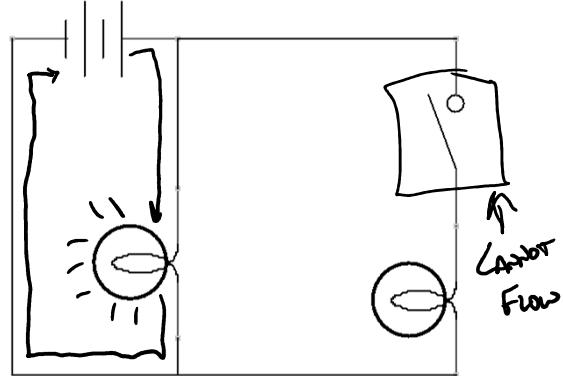


Current and Resistance

1

Electric Current

- movement of electrical charge
 - flows between two points of different potential (voltage)


- maintained by a type of charge pump, which continuously changes the potential
- Electrons flow from “-” to “+”
- Conventional Current goes from “+” to “-”

2

1

Electrical Circuit

- A closed electrical loop in which charge can flow
- Must have a high potential and low potential for current to flow

3

Sources of Current

- Each source maintains a potential difference across their terminals by converting other forms of energy to electrical energy
 - Batteries
 - Converts chemical energy into electric energy
 - Photovoltaic Cell (Solar Cell)
 - Converts light into electrical energy
 - Generators
 - Converts mechanical energy into electric energy

4

Moving Charge

- Charges are not created or destroyed, only transferred from one side of the pump to the other
- Current (I) can be found using:

$$I = \frac{\Delta Q}{\Delta t}$$

- Ampere
 - amount of charge moved in a circuit every second
1 C/s = 1 Amp
 - measured with an ammeter

5

Current Kills

The Damage Caused by Electric Shock	
Current	Possible Effects
1 mA	mild shock can be felt
5 mA	shock is painful
15 mA	muscle control is lost
100 mA	death can occur

6

Sample Problem

- The amount of charge that passes through the filament of a certain light bulb in 2.00 seconds is 1.67 C. Determine the current in the light.

$$I = \frac{Q}{t} = \frac{1.67}{2} = 0.835 \text{ A}$$

Answer: 0.835 A

7

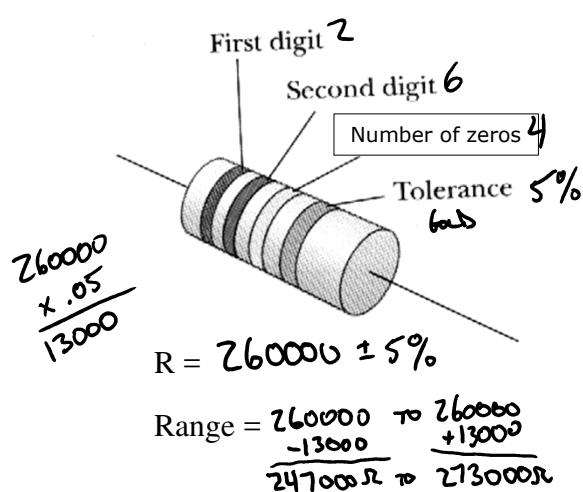
Moving Charges

- Conventional Current
 - flow of positive charge through a circuit
- Power
 - rate at which energy is used or converted to another form of energy

$$P = IV$$

$$E = Pt$$

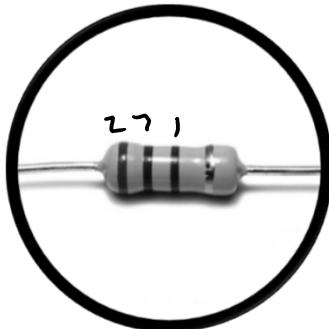
8


Resistance

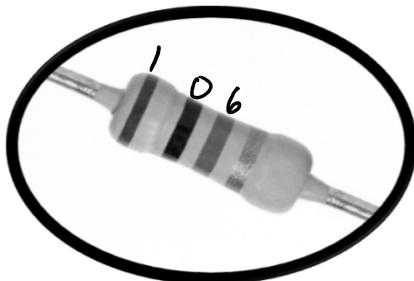
- The opposition to the flow of electric charge
- In a wire:
 - Longer wires have more resistance
 - Thicker wires have less resistance
 - Different materials affect the resistance
- Resistor
 - Carbon granules are mixed with varying amounts of clay can be molded into cylinders having a finite resistance.
 - Used to control the amount of current in a conductor

MEASURED IN OHMS (Ω)

9


Resistors

Color	Number	Tolerance
Black	0	
Brown	1	
Red	2	
Orange	3	
Yellow	4	
Green	5	
Blue	6	
Violet	7	
Gray	8	
White	9	
Gold		5%
Silver		10%


10

Example Resistors

$$R = 270\Omega \pm 5\%$$

$$\text{Range} = 270\Omega \text{ to } 270 \times 1.05\Omega$$

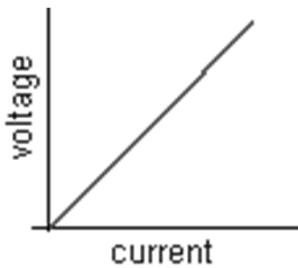
$$R = 1000\Omega \pm 5\%$$

$$\text{Range} = 950\Omega \text{ to } 1050\Omega$$

$$\begin{array}{r} 1000000 \\ \times .05 \\ \hline 500000 \end{array}$$

11

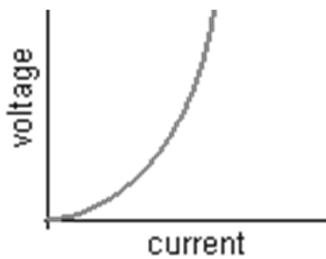
Resistance (Ohms Law)


- The ratio of the potential difference across a conductor to the current it carries is constant.
- This constant is the resistance in the circuit.

$$R = \frac{V}{I} \quad \text{or} \quad V = IR$$

12

Ohmic Materials


- Follows Ohm's Law and will have a constant slope on a V vs. I graph

13

Non-Ohmic

- Do not** follow Ohm's Law and **will not** have a constant slope on a V vs. I graph

14

Sample Problem

- A steam iron has a current of 6.4 A running through it when connected to a 120V outlet. What is the resistance of the iron?

$$\begin{aligned}V &= IR \\120 &= (6.4)R \\R &= \frac{120}{6.4} = 18.75\Omega\end{aligned}$$

Answer: 18.75Ω