

Current and Magnetism

Forces Caused by Moving Charges

1

Current Carrying Wires

- The magnetic fields around two current carrying wires placed next to each other will interact, causing a force between them.
 - When parallel conductors carrying charge in the same direction are placed near each other, they are _____ to one another.
 - When the charges in the conductors are flowing in the opposite direction, the wires are _____ from one another.

2

Current Carrying Wires

- The strength of this magnetic force can be found by using the equation:

Where

$k = 1 \times 10^{-7} \text{ N/A}^2$

l = the length of the conductors

I_1 and I_2 = current flowing through the two wires

d = the distance between the conductors

- Notice that the direction of the current will determine if it is a repulsive or attractive force

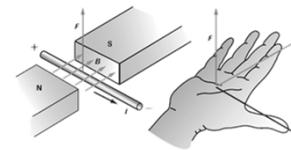
3

Example Problem

- The force between two wires each with a current of 8.0 A is 3.4×10^{-4} N. If each wire is 170 cm long, what is the distance between the wires?

- Answer: $d = 0.064$ m

4


A Wire in a Magnetic Field

- The magnetic field around a current carrying wire can interact with an existing magnetic field causing a _____ on the wire.
- The _____ of the force on the wire can be found by using the Third Right Hand Rule.

5

Third Right Hand Rule

- Place your _____ in the direction of the magnetic field and your thumb in the direction of the current.
- Your _____ will show the direction of the force on the wire.

6

Size of the Force on a Wire in a Magnetic Field

- To find the size of the force on a current carrying wire, we can use:

where

- B is the magnetic field strength in Teslas
- I is the current in Amps
- L is the length of the wire in the B-field

7

Sample Problem

- A 45 cm wire carrying 3.0 A of current to the right is placed in a 0.55 T magnetic field directed upward. What is the size and direction of the force on the wire?

($F = .7425 \text{ N}$)

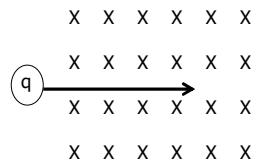
8

Common Magnetic Fields

- Here are a few common magnetic fields and their strengths:

TABLE 24-1 Typical Magnetic Field	
Source and Location	Strength (T)
Surface of neutron star (predicted)	10^8
Strong laboratory electromagnet	10
Small bar magnet	0.01
Earth's magnetic field	5×10^{-5}

9


Forces on Single Charges

- A single charge moving through a magnetic field acts like a _____ in a wire and therefore will have a _____ applied to it.
- The direction of the force on the charge can be found by using the Third Right Hand Rule.
 - It will be the _____ direction for a positive particle.
 - It will be the _____ direction for a negative particle.

10

Forces on Single Charges

- Use the Right Hand Rule to find the direction of the force on the charged particle.

11

Third Right Rule Examples

- Protons**
 - Example #1
 - Current: Right
 - B-Field Lines: Into
 - Force: _____
 - Example #2
 - Current: Down
 - B-Field Lines: Left
 - Force: _____
- Electrons**
 - Example #3
 - Current: Up
 - B-Field Lines: Out of
 - Force: _____
 - Example #4
 - Current: Left
 - B-Field Lines: Down
 - Force: _____

12

Forces on Single Charges

- The size of the force can be found by using the equation:

where:

- B is the magnetic field strength in Teslas
- q is the size of the charge in Coulombs
 - Remember protons and electrons have a charge of $\pm 1.6 \times 10^{-19}$ C.
- v is the velocity of the charge in m/s

13

Sample Problem

- An electron is shot upward at 4.0×10^6 m/s through a 0.35 T magnetic field that is directed toward the left. What is the size and direction of the force on the electron?

$$(F = -2.24 \times 10^{-13} \text{ N})$$

14