

Coulombs Law

Forces on Charges

1

Forces Caused By Charges

- Two types of charges: positive and negative
- Charges exert _____ on other charges over a distance
- Like charges _____
- Opposite charges _____
- Charged objects are always _____ neutral objects

2

Coulomb's Law

- Magnitude of the force that a tiny sphere with charge q_A exerts on a second sphere with a charge of q_B , separated by a distance, d , is

$$F = K \frac{q_A q_B}{d^2}$$

$$K = 9.0 \times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2$$

3

Coulomb's Law

- Direction of Forces
 - Positive force symbolizes a _____ force
 - Negative force symbolizes an _____ force
- Charged objects are always attracted to neutral objects
- Charge and force have a direct relationship.
- Distance and force have an inverse square relationship

4

Coulomb's Law Example

- The electron and proton of a hydrogen atom are separated by an average distance of $5.3 \times 10^{-11}\text{m}$. Find the magnitude and direction of the electric force they exert on each other.

5

Coulomb's Law Example

From the Problem:

$$d = 5.3 \times 10^{-11} \text{ m}$$

$$F = K \frac{q_A q_B}{d^2}$$

From the Book:

$$K = 9.0 \times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2$$

$$q_A = -1.60 \times 10^{-19} \text{ C}$$

$$q_B = +1.60 \times 10^{-19} \text{ C}$$

$$F = -8.2 \times 10^{-8} \text{ N, } (-) \text{ indicates an attractive force}$$

6

Sample Problem #2

- A $3.4 \mu\text{C}$ charge and a $-5.2 \mu\text{C}$ charge experience a 0.23 N attractive force between each other. How far are the two charges apart from one another?

7

Sample Problem #2

8

What happens when....

- Double the one of the charges?
- Double one charge and triple the other?
- Double the distance between them?
- Double one charge, quadruple the other and double the distance?

9

What if..

- Two charges have a force of 13 N between them and you double the amount of one of the charges. What is the new force?
- Two charges are 20 cm apart and they have a force of 24 N between them. Spreading them to 40 cm, what is the new force?

10