

Conservation of Momentum

Activity Review

- Elastic Collisions
 - Momentum Conserved?
 - What happened to the objects after the collision?
- Inelastic Collisions
 - Momentum Conserved?
 - What happened to the objects after the collision?
 - If one cart collides with another with the same mass, how will the velocity after compare to the velocity before?

1

Activity Review

- Explosions
 - Momentum Conserved?
 - If the objects involved in an explosion are different masses, how will the velocities of the objects compare?

2

Conservation of Momentum

Law of Conservation of Momentum

-
- The momentum of any one object can change but the momentum lost by one object must be gained by the other objects
-

3

Types of collisions

- Elastic
 - An elastic collision is one in which momentum is conserved and the objects move separately after the collision.
- Inelastic
 - An inelastic collision is one in which momentum is conserved and the objects combine after the collision.

4

Conservation of Momentum

Law of Conservation of Momentum

- In both cases, momentum is conserved.
- So the following is true:
 - total momentum before collision = total momentum after collision
 - $p_{\text{initial}} = p_{\text{final}}$
 - $(p_1 + p_2)_{\text{initial}} = (p_1 + p_2)_{\text{final}}$
 - $(mv_1 + mv_2)_{\text{i}} = (mv_1 + mv_2)_{\text{f}}$

5

Inelastic Collisions

- When using the conservation of momentum with an inelastic collision, the two masses before the collision are combined after the collision and they both move together with the same velocity.
-

6

Conservation of Momentum

Example

- A 2100 kg car is traveling with a velocity of 15 m/s. A 3450 kg truck is traveling toward the car with a velocity of 13 m/s. After they collide, the truck continues to move in the same direction at 2 m/s. What is the velocity of the car after the collision?

7

Example (cont.)

Initial

m_1 :

v_1 :

m_2 :

v_2 :

Final

m_1 :

v_1 :

m_2 :

v_2 :

8

Conservation of Momentum

Example 2

- A 30 g bullet is shot into a stationary 6 kg wood block. The bullet embeds itself into the block and they both travel with a velocity of 0.80 m/s. What is the original velocity of the bullet?
- What type of collision?
 -

9

Example (cont.)

Initial

m_1 :

v_1 :

m_2 :

v_2 :

Final

m_1 :

m_2 :

v_f :

10