

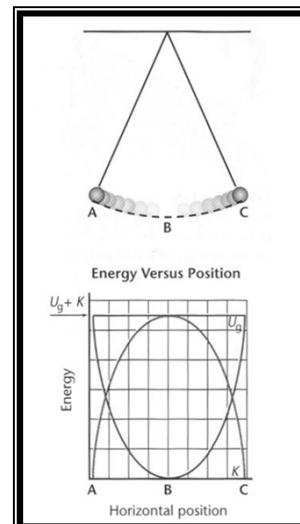
Conservation of Energy

1

Mechanical Energy

- What types of energy have we learned about already?
 - _____
 - _____
- The sum of kinetic energy and all forms of potential energy

2


Law of Conservation of Energy

- Energy cannot be created or destroyed. It can change form.
- Can only be proven when all forms of energy can be accurately measured.
- _____
- _____
- Let's look at a pendulum..

3

Energy of a Pendulum

- A simple pendulum will exhibit the law of conservation of energy during its motion.
- Notice the energy is _____, but the total energy will remain _____.

4

2

Law of Conservation of Energy

- What happens to the gravitational potential energy of a ball as it is dropped?
— _____
- What happens to the kinetic energy of a ball as it is dropped?
— _____

5

Law of Conservation of Energy

- How?
— The _____ is converted into _____.
- When a ball is dropped and bounces back up, does it reach the same height?
— _____

6

Law of Conservation of Energy

- Why?
 - Some of the energy is converted into _____
- Friction and thermal energy _____ the law is not followed, because we usually don't measure the temperature change.

http://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-basics_en.html

7

Law of Conservation of Energy

- The Math:

$$ME_{before} = ME_{after}$$

$$K_{before} + U_g \text{ before} = K_{after} + U_g \text{ after}$$

8

Sample problem

- Starting from rest, a 25.0 kg child slides down a frictionless slide with an initial height of 3.00 m. What is her speed at the bottom of the slide?

9

Given: $m = 25.0 \text{ kg}$

Before: After:

$$h = \underline{\hspace{2cm}} \quad h = \underline{\hspace{2cm}}$$

$$v = \underline{\hspace{2cm}} \quad v = \underline{\hspace{2cm}}$$

Equation:

$$\frac{1}{2}mv_{before}^2 + mgh_{before} = \frac{1}{2}mv_{after}^2 + mgh_{after}$$

10

Sample problem

- A toy car of mass 2.50 kg starts at the top of a 1.05 m drop with a velocity of 0.30 m/s.
 - What is the velocity of the coaster at the top of the next hill that is 0.85 m high?

11

Given: $m = 2.50 \text{ kg}$

Before: After:

$h = \underline{\hspace{2cm}}$ $h = \underline{\hspace{2cm}}$

$v = \underline{\hspace{2cm}}$ $v = \underline{\hspace{2cm}}$

Equation:

$$\frac{1}{2}mv_{before}^2 + mgh_{before} = \frac{1}{2}mv_{after}^2 + mgh_{after}$$

12