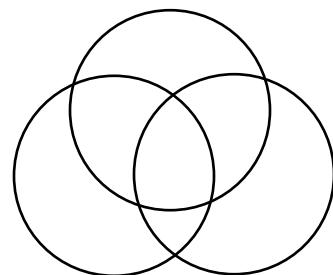
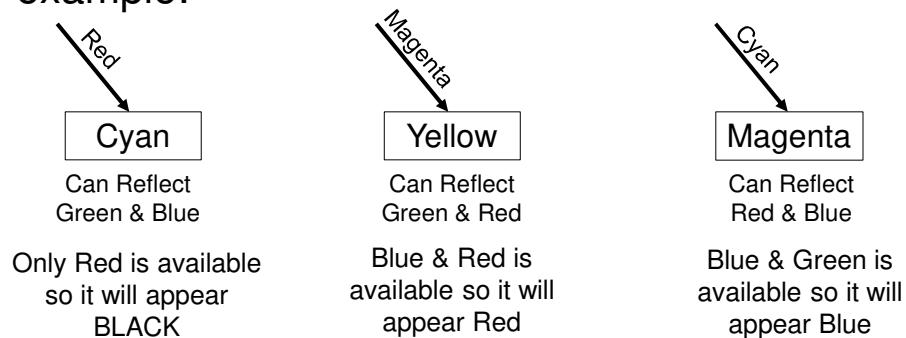


Colors of Light


- Additive Process
- Primary Colors
 - _____
 - _____
 - _____
- Complimentary Colors (make White)
 - Cyan (to _____)
 - Yellow (to _____)
 - Magenta (to _____)

1

Pigment Colors

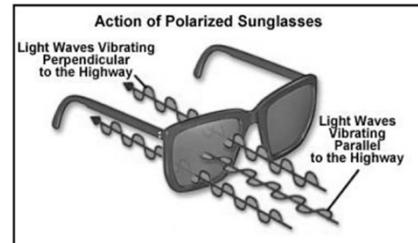
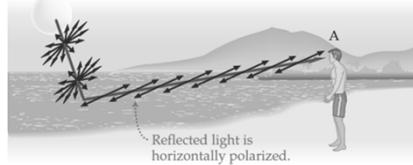

- Subtractive Process
- Primary Colors
 - _____ (Reflects Blue and Green)
 - _____ (Reflects Red and Green)
 - _____ (Reflects Blue and Red)
- Complimentary Colors (make Black)
 - Red (to _____)
 - Blue (to _____)
 - Green (to _____)

2

What color will it be?

- Pigments can only reflect the colors of light that make up that color, if available. If they are not available, it will appear black.
- For example:

3



Color Examples

- What color is a yellow posted-note absorbing from white light?
– Answer: _____
- What color would you have to add to cyan paint to make black paint?
– Answer: _____
- What color would a magenta tie appear if you shine yellow light on it?
– Answer: _____
- What color would a cyan color shirt appear when you shine red light on it?
– Answer: _____

4

Polarization

- A light can be linearly polarized one of three ways.
 - Light is polarized through transmission, reflection and scattering.
- All three methods of polarization cause the confining of wave movement to one plane along the line of propagation.
- Sunglasses are effective due to the concepts of polarization.
- Only a property of transverse waves.

