\qquad Date
Teacher \qquad Period

Vector Review W.S.

1. What is the difference between a vector and a scalar?

$$
\text { Vector } \rightarrow \text { SIze + Direction, SLALAR } \rightarrow \text { ONLY SIZE }
$$

2. What method is used to add vectors?
Haas to Tall
3. List a few examples of vectors.

$$
\begin{aligned}
& \text { imples of vectors. } \\
& \text { Displacemfar, Velocity, Accelerator, Force }
\end{aligned}
$$

4. You can row a boat in still water a velocity of $12 \mathrm{~m} / \mathrm{s}$. If you row downstream (with the current) in a river that is flowing at a rate of $5 \mathrm{~m} / \mathrm{s}$, how long will it take you reach the end of the river 1500 m downstream? $\quad V=17 \mathrm{~m} / \mathrm{s} \quad D=1500 \mathrm{n} \quad t=\frac{\Delta}{\mathrm{V}}=\frac{1500}{17}=88.2 \mathrm{~s}$
5. Two vectors with magnitudes of 3 m and 4 m are added together. What is the maximum value that the resultant could be? What is the minimum possible value of the resultant?

$$
M_{A X}=7 \quad M_{I N}=I_{m}
$$

6. If a kite is 32 m in the air and you unwound 105 m of string to get it there, what is the o angle that the string makes with the ground? Assume no sag in the string.

$$
S_{I^{-1}}(32 / 105)=17,7^{\circ}
$$

7. A vector has a horizontal component of the $32 \mathrm{~m} / \mathrm{s}$ East and a vertical component of $23 \mathrm{~m} / \mathrm{s}$ South. What is the magnitude and direction of the vector?

$$
\begin{aligned}
R^{2} & =32^{2}+23^{2} \\
& =39.4 \mathrm{~m}
\end{aligned}
$$

$\theta=T_{A_{N}}{ }^{-1}\left(\frac{23}{32}\right)$

$$
=35.7^{\circ} \text { Count of FAST }
$$

8. What are the components of a vector with a magnitude of $56 \mathrm{~m} / \mathrm{s}^{2}$ and a direction of 72.4^{0} West of South?

$$
\begin{aligned}
x & =56 \sin (72.4) \\
& =53.4 \text { WEsT } \\
y & =56 \cos (72.4) \\
& =16.9 \text { Sount }
\end{aligned}
$$

9. A plane travelling at a velocity of $56 \mathrm{~m} / \mathrm{s}$ east encounters a wind blowing $22 \mathrm{~m} / \mathrm{s}$, 34^{0} South of East. What is the resultant velocity of the plane?

$$
\begin{aligned}
x & =22 \cos 34^{\circ} \\
& =18.2 \mathrm{~m} / \mathrm{s} \\
y & =22 \mathrm{ss} 34^{\circ} \\
& =12.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. A dog travels $37 \mathrm{~m}, 23^{\circ}$ South of West. It then turns and travels $29 \mathrm{~m}, 41^{\circ}$ East of South. What is the dogs displacement from its starting position?

$$
x=37 \cos 23^{\circ}
$$

$$
=34.06 W_{E S T}
$$

$$
\begin{aligned}
y & =37 \text { sIr } 23^{\circ} \\
& =14.46 \text { Sount }
\end{aligned}
$$

$$
\begin{aligned}
x & =29 \text { SJ } 41^{\circ} \\
& =19,03 \text { EAST } \\
y & =29 \cos 41^{\circ} \\
& =21,89 \text { Sous it }
\end{aligned}
$$

