

Sources of Sound

- Any vibrating object can produce a sound
- The vibrations move molecules in the air creating pressure differences creating sound.

Forced Vibrations and Resonance

- Forced Vibrations
 - The forced transfer of a vibration to other media (Ex: guitar)
- Resonance
 - Occurs when the forced vibration matches the natural frequency of an object
- Resonance can produce a standing wave, creating a louder noise or other results...

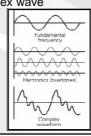
Resonance

- · How it works
 - Certain frequencies will produce standing waves in a given length of pipe or string
 - These standing waves produce the sound we hear in musical instruments.
 - By changing the length of the string or pipe, we can change the frequency that resonates
 - Resonant frequency can also depend on the diameter of the pipe

d'	brating air s covered	Holes	
First five	e holes cov	ered	Higher f
First three	ee holes co	wered	Stil higher f

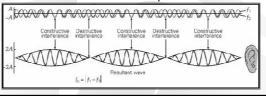
Resonance

- Fundamental
 - the lowest frequency making up a sound
- Harmonics
 - whole number multiples of the fundamental frequency
- Overtones
 - The first occurrence of resonance above the fundamental frequency


Note on musical vocabulary:

- The fundamental is also the first harmonic
- The first overtone is the second harmonic

Sound Quality


- Timbre or Quality
 - instrument dependent
 - combined frequencies / complex wave

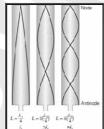
forms

Sound Quality

- Beat
 - pulsing variation of loudness
 - Humans can detect beat frequencies up to approximately 7Hz
 - Over 7Hz we hear a complex wave

Sound Quality

- Dissonance
 - when two notes are played resulting in a unpleasant sound
- Consonance
 - when two notes are played resulting in a pleasant sound or chord


Resonance

- Closed pipe resonator
 - resonating tube with one end closed
 - produces a standing wave
 - Minimum length is approx. 1/4 λ $\lambda=4L$

$$f_n = n \left(\frac{v}{4L} \right) \qquad (n = 1,3,5)$$

Notice only odd harmonics resonate in a closed tube

• Open-pipe resonator - open at both ends - produces a standing wave - Minimum length is $1/2 \lambda$ $\lambda = 2L$ $f_n = n \left(\frac{v}{2L} \right) \qquad (n = 1, 2, 3...)$ $f_n = n f_1$ Notice all harmonics resonate in a open tube

Return to Honors Physics Notes	