

Why Graph?

$>$ In general, graphs combine data into clearly visible relationships.
$>$ These relationships also help us predict the results of other \qquad situations, not yet tested.
-For example: \qquad
\qquad
\qquad

What speed would the car be going at 6 seconds? At 7 seconds?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parts of a Graph

$>$ When grading graphs, I will look for:

- Axes
- Labels
- Title
- Data Points
- Best Fit Line or Curve
- Orientation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Axes \& Variables

$>X$-Axis
\qquad

- Independent Variable: \qquad
\rightarrow Y Axis
- Dependent Variable:

Variable Relationships -

Generalizations

Direct Relationships

- As one variable increases, the other increases
- As one variable decreases, the other variable decreases
$>$ Inverse Relationships
- As one variable increases, the other decreases
- As one variable decreases, the other variable increases
\qquad
\qquad
\qquad

Variable Relationships
Linear: $\mathrm{y}=\mathrm{mx}+\mathrm{b}$

Speed of Car vs. Time

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conversions

$>$ Convert 45.0 km to cm .
$>$ Convert $32 \mathrm{~km} / \mathrm{hr}$ to m / s. \qquad
\qquad
\qquad
\qquad

Units-Checking Your Work

Keep track of the units as you solve problems. If the units don't come out right or don't make sense, your answer could be wrong.

Units-Checking Your Work

$>$ Find the equation to find the time it
takes a car traveling 50 mph to go 30 miles.
$>$ Try \qquad
time $=$ speed x distance
Units-Checking Your Work
$>$ Try
time $=$ distance \div speed
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

