
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Capacitors

- Used to store a set amount of charge
- made of two conductors separated by an insulator
- measured in farads (F)
- most commercial capacitors are usually $10 \times 10^{-12} \mathrm{~F}$ to $500 \times 10^{-6} \mathrm{~F}$

$$
C=\frac{Q}{V}
$$

Factors affecting Capacitance

- Area of plates
- Distance between plates
- Material between plates
> Example: paper, air, vacuum

Capacitors

- Capacitance of a parallel - plate capacitor (in air).

Permittivity

$$
C=\frac{\varepsilon_{0} A}{d}
$$

$$
\text { of free space }=e_{O}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{~m}^{2}\right)
$$

- Energy in a charged capacitor

$$
\mathrm{U}_{\mathrm{c}}=\frac{1}{2} \mathrm{QV}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}}=\frac{1}{2} \mathrm{CV}^{2}
$$

Dielectrics

- The material used in capacitors to increase the amount of charge stored on the plates.
> Example: paper or plastic
- Keeps plates from coming into contact with each other.
- Each material has a specific value (K)

Dielectric Constant

- The capability of a capacitor to store charge depends on the material, and is characterized by the dielectric constant (K).
- P. 528 has a chart of some constants.
- K is dimensionless, and always greater than 1.
- Values are comparisons with vacuum values.

Dielectric Effect On

Capacitance

- If we designate the vacuum values as E_{0} and V_{0}, then the dielectric constant is defined as

$$
K=\frac{V_{0}}{V}=\frac{E_{0}}{E}
$$

- The dielectric increases the capacitance by a factor of K :

$$
C=\frac{Q}{V}=K C_{0}
$$

Capacitors in Series

- When capacitors are wired in series, the charge (magnitude Q) is the same on all the plates.
$>\mathrm{Q}=\mathrm{Q} 1=\mathrm{Q} 2=\mathrm{Q} 3=.$.
- The sum of the voltage drops add up to the voltage source.

$$
>\mathrm{V}=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3+\ldots
$$

\qquad

Equivalent Series

Capacitance

- The value of a single capacitor that could replace the series combination.

Capacitors In Parallel

- The voltage across parallel capacitors are the same.

$$
>\mathrm{V}=\mathrm{V} 1=\mathrm{V} 2=\mathrm{V} 3=\ldots
$$

- Total stored charge is equal to the sum of the individual charges.

$$
>\mathrm{Q}_{\text {total }}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3+\ldots
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equivalent Parallel

Capacitance

- The equivalent capacitance to parallel capacitors is the sum of the individual capacitances.

