

What is Physics?

- Physics is the study of the physical world at its most fundamental level.
- Attempts to describe nature in an objective way through measurements.
- Physics is concerned with the two primary components of all things.

Areas of Physics

- There are six major areas of physics.
- MechanicsMotion and its causesThermodynamicsHeat and TemperatureWavesTypes of repetitive motionElectromagnetismElectricity, Magnetism, LightRelativityHigh speed particlesQuantum
MechanicsSubmicroscopic particles

Scientific Method

- An organized system of determining answers to questions using observation, experimentation and analysis.
- There are many "methods" to solving a particular problem.

Scientific Method

• In general, most scientific methods can be broken into these parts:

Problem Hypothesis Experiment Theory \leftarrow Law

Experiments

• Controlled Experiment

an experiment in which we only change one variable at a time

• System

the object(s) and actions we choose to observe during an experiment.

Physics and Math

- Physics is the practical application of algebra.
- To succeed in physics you should already know how to:
 - Use significant digits correctly
 - Convert between metric units
 - Graph and analyze data
 - Manipulate algebraic equations

Scientific Notation

- · Used to eliminate repeated zeros
- The exponent is the number of spaces the decimal point is from the "ones" position.
- For example: 320000000 =
 - 0.0005943 =
- Remember: a positive exponent represents a number larger than 1, a negative exponent => less than 1

SI Units

- Fundamental (Base) Units
 - seven basic units of measure
 - kg, s, m, K, A, cd, mol
- Derived Units
 - Unit containing any combination of fundamental units
 - Developed through the mathematic manipulation of base units (ex: m/s)

oico	р	10 ⁻¹²	tera	т	10 ¹²
nano	n	10 ⁻⁹	giga	G	10 ⁹
nicro	m	10 ⁻⁶	mega	Μ	10 ⁶
nilli	m	10 ⁻³	kilo	k	10 ³
enti	С	10 ⁻²	hecto	h	10 ²
leci	d	10 ⁻¹	deka	da	10 ¹

Converting Units - Example

- Convert the following:
 - 1523 g to kg
 - 1.523
 - 348 cm to m
 - 3.48
 - $-\,8.34\,\mu\text{A}$ to A
 - .00000834

Arithmetic with Scientific Notation

- Putting it in your calculator
 - Use the EE button on your calculator to replace the "x 10" in the number:
 - 9.52 x 10³ + 2.62 x 10² = 3.2 x 10⁻² x 2.0 x 10³ = 9.6 x 10⁻⁴ / 3.2 x 10³ =

Accuracy vs. Precision

- Precision
 - How exact the measurement is
 - High likelihood of repeatability
- <u>Accuracy</u>
 - How close the number is to the accepted value

Significant Digits

- Valid digits are determined by the precision of the device.
- The last digit is always assumed to be estimated
- General Rules
 - Non-zero digits are always significant
 - All final zeros after the decimal are sig.
 - Zeros between 2 sig.digits are sig.
 - Zeros used only for spacing the decimal are not significant.

How Many Sig. Figs

- 0.000580 3
- 97600 3
- 43578.008 8
- 8009 4

Math with Significant Digits

• Your answer should have the same amount of significant digits as the measurement having the least total amount of significant digits.

Operations with Significant Digits

• Note:

- The text considers trailing zeros to be significant.
- For example: 20 has two significant digits

Manipulating Equations

- Solve for a F = ma
- Solve for a
 v_f = v_i + at
- Solve for a $d = v_i t + \frac{1}{2} a t^2$

Return to Honors Physics Notes