

What is thermodynamics?

- The quantitative relationship between heat and other forms of energy
- >Internal energy (ΔU)
 - >the available amount of potential and kinetic energy in a substance

Mechanical Energy and Heat

- > When work is done to a substance in such a way that it increases its temperature, the amount of work done is equal to the heat gained by the substance, or $W = \Delta Q$.
- ≻Remember W= Δ KE

First Law of Thermodynamics

- The amount of energy supplied to a system in the form of heat is equal to the work done by the system plus the change in internal energy of the system
- $> Q=(\Delta U) + W$
 - W is negative when work is done on the systemW is positive when work is done by the system
- > When other is done by the system
 > When other is one server less the system
 - heat, there is no energy loss.

Thermodynamic Processes

> Isothermal – Constant temperature
 > Q = W
 > Isobaric – Constant pressure
 > W = p ΔV
 > Q = ΔU + p ΔV
 > Isometric – Constant Volume
 > Q = ΔU

Adiabatic Processes

- >A process in which heat is <u>not</u> added or removed from the system.
- >Work done by the system decreases the internal energy of the substance

$$P = 0 = \Delta U + W$$

$$\Rightarrow W = -\Delta U$$

Isothermal Expansion

- >At a constant temperature, the work done by an expanding gas is the product of the pressure and the change in volume. $Q = W = p(V_f - V_i)$
- > Any heat that is gained by the gas must be absorbed from its surroundings. This heat causes a change in the volume, it does not increase the temperature.

Energy Transfer

> How much heat is given off when a 100kg crate pushed 5 m horizontally across the floor? ($\mu = 0.30$) > $Q = W = F_f(d)$ > $Q = \mu F_N(d) = 0.30(100kg)(9.8 m/s^2)(5 m)$ > Q = 1470 J

Return to Honors Physics Notes