

Reflectance

The ratio of reflected light to the total amount of light falling on the surface. \qquad
© Examples

Magnesium Oxide	98%
Silver	95%
Black	$<5 \%$

\qquad
\qquad
\qquad
\qquad

Laws of Reflection

\qquad
$\int^{\text {st }}$ Law
The angle of incidence is equal to the \qquad angle of reflection
$2^{\text {nd }}$ Law
The incident and reflected ray lie in the same geometric plane. \qquad
\qquad
\qquad
\qquad

Regular Reflection

A narrow beam of light reflects without loss of definition or intensity.
Reflected rays are parallel to each other Caused by specular (polished) surfaces

Diffuse Reflection

Law of reflection still holds, but the normals at the points of intersection are not parallel.
Reflected rays are not parallel to each other
Caused by "rough" surfaces \qquad
\qquad
\qquad

Mirrors

Concave (Converging)

$$
\xrightarrow{\text { Light }}
$$

Convex (Diverging)

$$
\rightarrow>
$$

Plane

$\xrightarrow{\text { Light }}$

Images

*The "picture" of the object seen in the mirror.
Types
Real

- Rays of light are reflected and actually pass through the point where the image is located.
Virtual
- Rays of light appear to come from the point where the image is located, but actually do not

Describing Images

Type:	Real or virtual
Orientation:	Upright or inverted
Size:	Larger, smaller, or same
Distance:	Farther, closer, or same

Plane Mirrors

Create virtual, upright, same size images that appear the same distance behind the mirror as the object is in front.

Return to Honors Physics

 Notes