
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Projectile Motion

- Projectiles
> objects given an initial velocity that then move under the force of gravity
- Trajectory \qquad
> the path followed by a projectile

\qquad
\qquad
\qquad
\qquad
\qquad

Independence of Dimensions

- Since the horizontal and vertical motion of an object are independent \qquad of each other, the motion equations can be used to determine the exact \qquad position of a projectile.
- However, we must first distinguish between the x and y components of any vectors. \qquad
\qquad

Independence of Dimensions

- With no acceleration in the horizontal direction, we can find the horizontal \qquad position by using the equation:
$>x=v_{0(x)} t+1 / 2 a_{x} t^{2}$ \qquad
- The velocity in the horizontal direction will not change, therefore: \qquad
$>\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{o}(\mathrm{x})}+\mathrm{a}_{\mathrm{x}} \mathrm{t}$

Independence of Dimensions

\qquad
\qquad

- Since there is acceleration (gravity) in the vertical direction the position can be \qquad found using the equation:
$>y=v_{0(y)} t+1 / 2 a_{y} t^{2}$ \qquad
- The acceleration causes a change in velocity in the vertical direction. We can find the final velocity using the equation: \qquad $>v_{(y)}=v_{0(y)}+a_{y} t$

Projectile Problem

- A stone is thrown horizontally at a speed of $5 \mathrm{~m} / \mathrm{s}$ from the top of a cliff 78.4 m high.
$>$ How long is the the stone in the air?
$>$ How far from the cliff does the stone land?
> What is the horizontal and vertical components of the velocity just before the stone hits the ground?

Projectile Problem

- Find the time
$>y=v_{o(y)} t+1 / 2 a_{y} t^{2}$
$>y=1 / 2 a_{y} t^{2}$
$>t^{2}=2 \mathrm{y} / \mathrm{a}_{\mathrm{y}}$

$>\mathbf{t}^{2}=2(-78.4 \mathrm{~m}) /\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=16 \mathrm{~s}^{2}$
$>\mathrm{t}=4 \mathrm{~s}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Projectile Problem

- Find the horizontal distance
$>x=v_{x} t$
$>x=(5.0 \mathrm{~m} / \mathrm{s})(4.00 \mathrm{~s})$
$>x=20 \mathrm{~m}$
- Find the components

$>v_{x}=5.0 \mathrm{~m} / \mathrm{s}$
$>v_{(y)}=a_{y} t=\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4.00 \mathrm{~s})=-39.2 \mathrm{~m} / \mathrm{s}$

Projectiles Launched at an Angle

\qquad
\qquad

- When projectiles are launched at an angle, they are given an initial \qquad horizontal and vertical velocity.
- The horizontal distance the projectile travels is called the range.

Angled Launch Problem

- A ball is thrown with a initial velocity of $5.5 \mathrm{~m} / \mathrm{s}$ at an angle of 54°. Find: \qquad
$>$ the time in the air.
$>$ how high the ball went. \qquad
$>$ what the range was.

Angled Launch Problem

- Find components
$\begin{aligned} & \Rightarrow \mathrm{v}_{0(x)}=5.5 \cos 54^{\circ} \\ & \Rightarrow \mathrm{v}_{0(x)}=3.23 \mathrm{~m} / \mathrm{s} \\ & \Rightarrow \mathrm{v}_{0(y)}=5.5 \sin 54^{\circ} \\ & \Rightarrow \mathrm{v}_{0(y)}=4.45 \mathrm{~m} / \mathrm{s}\end{aligned} \underbrace{54^{\circ}}_{\mathrm{v}_{0(x)}=\mathrm{v} \cos 54^{\circ}} \quad \mathrm{v}_{0(y)}=\mathrm{v} \sin 54^{\circ}$ \qquad
\qquad
\qquad
\qquad
\qquad

Angled Launch Problem

- Find time at $\mathbf{y}=0$
$>0=v_{0(y)} t+1 / 2 a_{y} t^{2}$

$>t^{2}=-2(4.45 \mathrm{~m} / \mathrm{s}) /\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$>t=.91 \mathrm{~s}$
Or use the quadratic formula

Angled Launch Problem

- Find Max height
- Maximum height occurs at $\mathrm{t} / 2$.

$>\boldsymbol{y}=\mathbf{v}_{0(y)} \mathbf{t}+1 / 2$ at $^{2} \quad \mathrm{~V}_{0(x)}=3.23 \mathrm{~m} / \mathrm{s}$
$>y=(4.45)(.45)+1 / 2(-9.8)(.45)^{2}$
$>y=1.01 \mathrm{~m}$

Projectiles Launched at an Angle

- It can be proven using trigonometric identities that the range of the projectile can be found using:
$>R=\frac{v_{0}^{2}}{g} \sin 2 \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Return to Honors Physics \qquad Notes \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

