Curved Mirrors

- Types of Mirrors
- Convex (Diverging)
- Concave (Converging)

Curved Mirrors

- Parts
- Focal Point - where parallel rays are focused.
- Center of curvature (R or $\mathrm{C}=2 \mathrm{f}$)

Spherical Mirrors

- Spherical Aberration
- Incident rays farther away from the principal axis do not pass exactly through the focal point

Curved Mirrors

- Rays
- Parallel \Rightarrow in || out through f
- Focal \Rightarrow in through fout $\|$
- Central in and out through the center

Curved Mirrors

- Equations
- Mirror Equation $\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
- Magnification $\quad M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$\begin{array}{ll}d_{i}<d_{0}=\text { closer } & +M=\text { upright } \\ d_{i}>d_{0}=\text { farther } & -M=\text { inverted }\end{array}$
$+d_{i}=$ real image
M > 1 = larger
- $\mathrm{d}_{\mathrm{i}}=$ virtual image
$\mathrm{M}<1$ = smaller

Return to Honors Physics Notes

