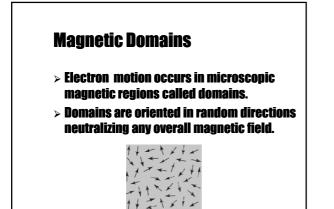
Magnetism

What is it and how does it work?

Magnetic Poles

- > All magnets have two poles
- monopoles do not exist.
- North pole points toward to the north, south towards the south.
- > Like poles repel, unlike attract.
- > Earth's magnetic North is actually geographic South.



Magnetic Materials

- > Ferromagnetic
 - Strongly attracted to magnetic materials (ex: iron, steel, cobalt)
- > Paramagnetic
 - Very slightly attracted to magnetic materials (ex: wood, aluminum, platinum)
- > Diamagnetic
 - Weakly repelled by magnetic materials
 (ex: gold, zinc, sodium chloride)

Cause of Magnetism

- > Magnetism is caused by a charge in motion
- > Electrons in motion
 - Revolving around the nucleus
 - Spinning around it own axis
 - Usually occur in pairs, neutralizing each other
- > Magnetic materials have an imbalance of electrons in orbits and spins.

Creating Magnets • When a ferromagnetic material is placed in an magnetic field, the domains align, magnetizing the material. Magnetic of unagetized into Commanded into the formation (b)Induced magnetism

Types of Magnets

> Permanent magnets

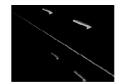
• If the domains remain aligned after the magnetic field in removed, the material is said to be permanently magnetized.

> Temporary magnets

• If the domains randomize after the magnetic field in removed, the material is said to be a temporary magnet.

"Neutralizing" Magnets

- > Heating a ferromagnetic material to a specific temperature breaks down the domain regions resulting in a paramagnetic material.
 - This temperature is known as the Curie point.


Magnetic Fields

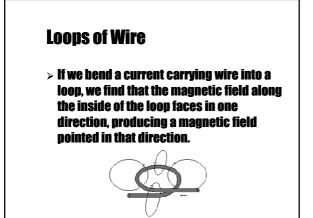
- > The lines of magnetic flux are drawn away from North and towards the South
- > The strength of a magnetic field is shown by the number of magnetic field lines in a certain area.
- > More Magnetic Field Lines = Stronger Magnetic Field

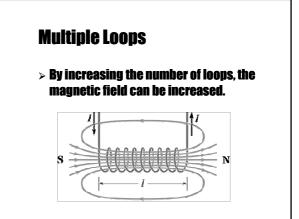
No 3

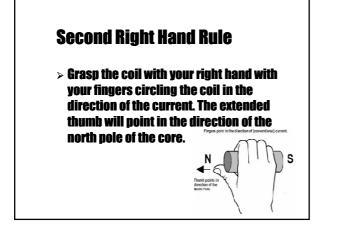
Electromagnetism

- > Current passing through a wire creates a magnetic field.
- > Discovered by Oersted, when a compass was placed by a current carrying wire.

Magnetic Field Strength


> To determine the magnetic field strength
 (B) along a wire, we use:


$$B = 2k \frac{I}{r}$$


Where

- $k = 1 \times 10^{-7} \text{ N/A}^2$ I = current in the wire (A)
- r = distance from wire (m)
- B = magnetic field strength (T)

Return to Physics Notes