
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heat and Temperature

- Heat

- the thermal energy transmitted from one body to another
\qquad
- Temperature
- the physical property that determines the direction in which heat will flow.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Temperature Scales

- Fahrenheit (F°)
- Originally based on an salt/water combination and the temperature of the human body \qquad
- Celsius $\left({ }^{\circ} \mathrm{C}\right)$
- based on the freezing point $\left(0^{\circ} \mathrm{C}\right)$ and the boiling \qquad point $\left(100^{\circ} \mathrm{C}\right)$ of water
- Kelvin (K)
- based on the theoretical temperature that molecular energy is at a minimum. (0 K)

Temperature Scale Conversions

- Celsius to Fahrenheit

$$
T_{F}=\frac{9}{5} T_{C}+32
$$

- Fahrenheit to Celsius
\qquad
\qquad
$T_{C}=\frac{5}{9}\left(T_{F}-32\right)$
- Celsius to Kelvin

$$
T_{K}=T_{C}+273.15
$$

Thermal Expansion

- Linear

- The change in length of a solid dependant on the material of the solid and the change in temperature

$$
\Delta L=\alpha L_{0} \Delta T
$$

- $\alpha=$ the coefficient of linear expansion
- $\Delta \mathrm{T}$ can be in Celsius or Kelvin
-See Table 10.1 on p. 351
-NOTE: this expansion occurs in all 3 dimensions

Thermal Expansion

- Volumetric
- The change in volume of a liquid dependant on the liquid and the change in
\qquad temperature

$$
\Delta V=\beta V_{0} \Delta T
$$

$\bullet \beta=$ the coefficient of volumetric expansion \qquad
$-\Delta T$ can be in Celsius or Kelvin
-See Table 10.1 on p. 351
\qquad
\qquad
\qquad
\qquad
\qquad

Thermal Expansion

- Charles Law

- All gases expand as the are heated.
- All gases have approximately the same coefficient of expansion $\left(3.663 \times 10^{-3} /{ }^{\circ} \mathrm{C}\right)$
- The coefficient of expansion is nearly constant at all temperatures
- The volume of a gas is directly proportional to the Kelvin temperature of the gas , at constant pressure. $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$

Thermal Expansion

- Boyle’s Law
- The volume of a gas varies inversely with \qquad the pressure on the gas, at a constant temperature

$$
p_{1} V_{1}=p_{2} V_{2}
$$

Standard Temperature and Pressure (STP)

- The ideal situation for gas laws
- Temperature $=0^{\circ} \mathrm{C}$
- Pressure $=1 \mathrm{~atm}$ or $1.01 \times 10^{5} \mathrm{~Pa}$

Combined Gas Equation

- Combination of Boyle's and Charles' Laws
- Used to find how a gas changes under certain conditions

$$
\begin{gathered}
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
\quad \text { or } \\
P V=n R T
\end{gathered}
$$

\qquad

Return to Honors Physics Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

