

How is Heat Transferred?

- Conduction
 - the transfer of energy through collisions of the particles in the material
- Convection
 - the transfer of energy through the transfer of mass
- Radiation
 - the transfer of energy through the electromagnetic waves

Heat Engines

- Any device that converts thermal energy into mechanical energy
- Heat, Q₁, is delivered to the engine, the engine does an amount of mechanical work, and exhausts an amount of heat, Q₂

Efficiency of Heat Engines

- Compares the amount of work done by the engine to the amount of heat added
- In an ideal engine:

$$e = \frac{W}{Q_1} \qquad or \qquad e = 1 - \frac{T_2}{T_1}$$

2nd Law of Thermodynamics

- Heat cannot be totally transformed into mechanical work, there must be an exhaust of heat to a cooler "heat sink"
- Proof that it is impossible to obtain absolute zero

Entropy

- The amount of internal energy that cannot be converted into kinetic energy.
- The change in a system's energy is of most importance

$$\Delta S = \frac{\Delta Q}{T}$$

Entropy

- The Law of Entropy
 - the entropy of a system always tends to increase
 - natural processes lead to increasing entropy

Types of Engines

- External Combustion
 - Fuel is burned outside the engine
 - Steam Engines and Turbines
- Internal Combustion
 - Fuel burned inside engine, requiring use of fuel with no solid residue.
 - Gas Engine

Types of Engines

- Jet Engines
 - Hot combustion gases rush out of the engine, the reaction force is the "jet" moving forward.
- Rockets
 - Same principle as jet engines, but rockets also supply the oxidizer.

Heat Pump

- Transfers heat from a low temperature source to a high temperature heat sink.
- Used to cool in the summer and heat in the winter.
- Uses a vapor that easily condenses under compression. The heat absorbed and given off is the heat of vaporization of the substance.

