18
 gubilly

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heat Scales

- No device can directly measure the thermal energy given off or absorbed by an object
- The effect of heat must then be measured, so a unit of measure was made based on the effects of heat on water.

Heat Scales

- Units of measure \qquad
- 1 calorie (cal)
- the amount of heat needed to increase the \qquad temperature of 1 g of water $1^{\circ} \mathrm{C}$.
- 1 Calorie (Cal)
- 1000 calories \qquad
-4.19 Joules
- the amount of energy in 1 calorie
- 1 Btu (British Thermal Unit)
- the amount of heat needed to increase the temperature of 1 lb of water $1 \mathrm{~F}^{\circ}$.

Heat Capacity

- Heat Capacity
- The amount of heat needed to change the temperature of an object $1^{\circ} \mathrm{C}\left(\mathrm{J} /{ }^{\circ} \mathrm{C}\right)$
- Specific Heat (c)
- The heat capacity of a material per unit mass ($\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$)
- Table 11.1 on p 370 has a list of commonly used specific heats.

Heat

- The amount of heat needed to change \qquad the temperature of a body can be found using the equation:

$$
Q=m c \Delta T
$$

Heat Exchange

- Endothermic Process
- process that absorbs heat
- Exothermic Process
- process that gives off heat
- Law of Heat Exchange
- in any heat transfer system, the heat lost by one substance must be equal to the heat gained by another substance.

$$
Q_{\text {lost }}=Q_{\text {gained }}
$$

Changes of Phase

- As a material changes from one phase \qquad of matter to another, the temperature remains constant, but energy is still absorbed and used to change state. This is usually called latent heat (L).
- Heat of fusion
- the amount of heat required to change state from solid to liquid

$$
Q=m L_{F}
$$

$\mathrm{L}_{\mathrm{F}}=$ Heat of fusion for 1 kilogram of material

Changes of Phase

- Heat of Vaporization
- the heat required to change state from liquid to gas

$$
Q=m L_{V}
$$

$\mathrm{L}_{\mathrm{v}}=$ Heat of vaporization for 1 kilogram of material

Note: See Table 11.2 on Page 375 for L_{F} and L_{v} numbers

Example

- Calculate the number of joules evolved \qquad when 4.00 kg of steam at $100^{\circ} \mathrm{C}$ is condensed, cooled and changed to ice \qquad at $0.00^{\circ} \mathrm{C}$.

```
Q gained
    = ms L}\mp@subsup{L}{V}{}+\mp@subsup{m}{w}{}\mp@subsup{c}{w}{}\Delta\mp@subsup{T}{w}{}+\mp@subsup{m}{w}{}\mp@subsup{L}{F}{
    = 4.00kg(22.6x105 J / kg)+4.00kg(4186J / kg \bullet}\mp@subsup{}{}{\circ}\textrm{C})(100.0.0'\textrm{C}
        +4.00kg(3.30x105 J/kg)
    = 1.20\times10}\mp@subsup{}{}{7}\textrm{J
```


