

Uniform Circular Motion

- Definition
- moving in a circle at a constant speed
- Rotating
- Moving around an axis located within the object itself (ie. spinning top)
- Revolving
- Moving around an axis located outside the object (ie. Earth around the sun)

Uniform Circular Motion

- Period (T)
- the amount of time it takes for an object to make one revolution around the circle \qquad
- Frequency (f)
- The amount of revolutions or cycle each second
- Notice the relation botipeen Period and frequency

$$
f=\frac{1}{T}
$$

Circular (Tangential) Speed

- Velocity of the object moving at a constant rate around a circular path
- Start with the equation for velocity

$$
v=\frac{d}{t}
$$

- Then substitute the values for a circle

$$
v \equiv \frac{d}{t} \equiv \frac{2 \pi r}{T}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

- For rotating and revolving situations, it is easier to account for the change in the angle and radius rather than the x and y coordinates

Rotary Motion

- Motion of an object around an internal axis
- Angular Velocity
- the rate at angular displacement changes

$$
\omega=\frac{\Delta \theta}{\Delta t}
$$

- 1 revolution $=\underset{\substack{360^{\circ} \\ \text { or }}}{ }=2 \pi$ radians

$$
1 \text { radian }=\frac{360^{\circ}}{2 \pi}=57.3^{\circ}
$$

Rotary Motion

- Angular Velocity
- If we look at an object making complete rotations or revolutions, the angular velocity of the object can be found using:

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Tangential Velocity and Angular Velocity

- Consider a merry go round: \qquad

\qquad
\qquad
\qquad
- Where do you have the largest angular velocity?
- Same at all locations
- Where do you have the largest tangential velocity?
- The outer edge of the merry go round

Tangential Velocity and Angular Velocity

- Consider a merry go round:

- Based on your previous answers, tangential velocity is related to distance you are from the center of rotation.

$$
v=r \omega
$$

Circular Acceleration

- Centripetal => "center seeking"
- Centripetal Acceleration
- $a_{c}=\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r} \equiv r\left(\omega^{2}\right.$
- $a_{c}=\frac{v^{2}}{r}=\frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r}=\frac{4 \pi \pi^{2} r}{T^{2}}$

Circular Forces

- Centripetal Force
- force applied to the object to keep it moving in a circle.

$$
F_{c} \equiv m a_{c} \equiv m \frac{v^{2}}{r}
$$

- What direction will the object move once the centripetal force disappears?

Circular Forces:Application

- A car moves around a curve that has a \qquad radius of 45.0 m . If the concrete pavement is dry, what is the maximum \qquad speed that the car can move around the curve without skidding?
- What is keeps the car from skidding off the track?

- Friction

Circular Forces:Application

- So the force of friction must apply the centripetal force or:

$$
F_{f f} \equiv F_{c} \Longleftrightarrow \mu F_{N}=\frac{m m v^{2}}{r} \sqsubseteq \mu m g=\frac{m v^{2}}{r}
$$

- Solving for velocity, we get:
$v^{2}=\mu g^{r} \Longrightarrow_{v \equiv \sqrt{\mu g r} \Longrightarrow_{v}=\sqrt{.8\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) 45 \mathrm{~m}}}^{y}$

$$
v \equiv 18.8 \mathrm{~m} / \mathrm{s}
$$

Vertical Circles

- What is the minimum velocity required to make it around the top of the circle? - At the top of the circle, the centripetal force must be equal to the force due to gravity.

$$
\begin{aligned}
m \frac{v^{2}}{r} & \equiv m g \\
v & \equiv \sqrt{r g}
\end{aligned}
$$

Rotary Motion:Acceleration

- Angular Acceleration
- rate of change of angular velocity

$$
\alpha \equiv \frac{\Delta \omega}{\Delta t}
$$

- Angular and Linear Acceleration
- Like linear velocity, linear acceleration also varies with the distance from the center of motion, therefore:

$$
a_{t} \equiv n a
$$

Linear vs. Rotary

- All rotary equations follow the same format as their linear counterparts

$$
\begin{array}{ll}
\text { Linear } & \text { Rotational } \\
v \equiv v_{\theta}+c a t & \omega \equiv \omega_{\theta}+\alpha t \\
x=v_{\theta} t+\frac{1}{2} a t^{2} & \theta=\omega_{\theta} t+\frac{1}{2} \alpha t^{2} \\
v^{2} \equiv v_{\theta}^{2}+2 a x & \omega^{2} \equiv \omega_{\theta}^{2}+2 \alpha \theta
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Return to Honors Physics \qquad Notes \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

