

Acid-Base Reactions

8

9

QUESTION: You titrate 100. mL of a 0.025 M solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH of the final solution?

Strategy — find the concentration of the conjugate base $C_6H_5CO_2$ in the solution AFTER the titration, then calculate pH.

This is a two-step problem

1. stoichiometry of acid-base reaction

2. equilibrium calculation

QUESTION: You titrate 100. mL of a 0.025 M solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH of the final solution?

STOICHIOMETRY PORTION

1. Calculate the moles of NaOH required

 $(0.100 L C_6 H_5 CO_2 H)(0.025 M)$

 $= 0.0025 \text{ mol } C_6 H_5 CO_2 H$

(mols acid = mols base)

This requires 0.0025 mol NaOH

2. Calculate the volume of NaOH required 0.0025 mol (1 L / 0.100 mol)

= 0.025 L NaOH = 25 mL of NaOH required

QUESTION: You titrate 100. mL of a 0.025 M solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH of the final solution?

10

11

STOICHIOMETRY PORTION, cont. Remember that 25 mL of NaOH are required

3. Moles of $C_6H_5CO_2$ produced = moles $C_6H_5CO_2H = 0.0025 \text{ mol (1:1 ratio)}$

4. Calculate the concentration of $C_6H_5CO_2^{-1}$ There are 0.0025 mol of $C_6H_5CO_2$ in a TOTAL SOLUTION VOLUME of 125 mL

 $[C_6H_5CO_2] = 0.0025 \text{ mol} / 0.125 \text{ L} = 0.020 \text{ M}$

QUESTION: You titrate 100. mL of a 0.025 M solution of benzoic acid with 0.100 M NaOH to the equivalence point. What is the pH at equivalence point? Equivalence Point Most important species in solution is benzoate ion, C₆H₅CO₂ the weak conjugate base of benzoic acid, C₆H₅CO₂H. $C_6H_5CO_2^+ + H_2O \overrightarrow{=} C_6H_5CO_2H + OH^ K_{\rm b} = 1.6 \times 10^{-10}$ Make an ICE chart... $[C_6H_5CO_2^{--}] [C_6H_5CO_2H]$ [OH-] initial 0.020 0 0 change - X +X +X equilib 0.020 - x х х

$$K_{b} = 1.6 \times 10^{-10} = \frac{x^{2}}{0.020 - x}$$
Neglect x
$$x = [OH^{-}] = 1.8 \times 10^{-6}$$
pOH = 5.75 ----> pH = 8.25

At the half-way point,
$$[C_6H_5CO_2H] = [C_6H_5CO_2^{-1}]$$

 $K_a = [H_3O^+][C_6H_5CO_2^{-1}]$
 $[C_6H_5CO_2H]$
Therefore, $[H_3O^+] = K_a = 6.3 \times 10^{-5}$
 $pH = 4.20 = pK_a$ of the acid

