Oxidation-Reduction Reactions

1

Thermite reaction $Fe_2O_3(s) + 2 AI(s) - --> 2 Fe(s) + AI_2O_3(s)$

REDOX REACTIONS

Redox reactions are characterized by **ELECTRON TRANSFER** between an electron donor and electron acceptor.

Transfer leads to-

- 1. increase in oxidation number of some element = OXIDATION
- 2. decrease in oxidation number of some element = REDUCTION

LEO the lion says GER

Where LEO = loss of electrons is oxidation & Where GER = gain of electrons is reduction (OIL RIG for boys) 3

OXIDATION NUMBERS

- The electric charge an element APPEARS to have when electrons are counted by some arbitrary rules:
- 1. Each atom in free element has Oxidation # = 0.
 - $Zn \quad O_2 \quad I_2 \quad S_8$
- 2. In simple ions, oxidation # = charge on ion.

-1 for Cl⁻

+2 for Mg²⁺

4

5

6

OXIDATION NUMBERS

3. O has oxidation # = -2

(except in peroxides: in H₂O₂, O = -1)

4. **Oxidation # of H = +1**

- (except when H is associated with a metal as in NaH where it is -1)
- 5. Algebraic sum of oxidation numbers = 0 for a compound

= overall charge for an ion

Recognizing a Redox Reaction

Corrosion of aluminum

2 Al $_{\rm (s)}$ + 3 Cu $^{2+}{}_{\rm (aq)}$ -> 2 Al $^{3+}{}_{\rm (aq)}$ + 3 Cu $_{\rm (s)}$

Al(s) --> Al³⁺(aq) + 3 e⁻

- Oxidation number of Al increases as e⁻ are donated by the metal.
- Therefore, Al is OXIDIZED
- Al is the **REDUCING AGENT** in this balanced half-reaction.

Recognizing a Redox Reaction

8

Corrosion of aluminum

2 Al $_{\rm (s)}$ + 3 Cu²⁺ $_{\rm (aq)}$ -> 2 Al³⁺ $_{\rm (aq)}$ + 3 Cu $_{\rm (s)}$

Cu²⁺(aq) + 2 e⁻ --> Cu(s)

- Oxidation number of Cu decreases as e⁻ are accepted by the ion.
- Therefore, Cu is REDUCED
- Cu²⁺ is the OXIDIZING AGENT in this balanced halfreaction.

Recognizing a Redox Reaction

Notice that the 2 half-reactions add up to give the overall reaction

-if we use 2 mol of Al and 3 mol of Cu²⁺.

2 Al(s) --> 2 Al³⁺(aq) + 6 e⁻

3 Cu²⁺(aq) + 6 e⁻ --> 3 Cu(s)

2 Al(s) + 3 Cu²⁺(aq) ---> 2 Al³⁺(aq) + 3 Cu(s)

Final equation is balanced for mass and charge.

REDOX REACTIONS

Cu(s) + 2 Ag⁺(aq) ---> Cu²⁺(aq) + 2 Ag(s)

10

11

12

In all reactions if something has been oxidized then something has also been reduced

Reaction TypeOxidationIn terms of oxygengainIn terms of halogengainIn terms of electronsloss

loss loss

Reduction

gain

Identify the element oxidized and the oxidizing agent...

- Magnesium + hydrochloric acid→ magnesium chloride + hydrogen gas
- 2. Lead (II) oxide + Carbon monoxide→ lead solid and carbon dioxide
- Methane + oxygen → carbon dioxide and water

Identify the element oxidized and the oxidizing agent...

13

- 1. Magnesium + hydrochloric acid→ magnesium chloride + hydrogen gas
- $Mg^{0} \rightarrow Mg^{2+}$ = element oxidized

HCI → oxidizing agent

2. Lead (II) oxide + Carbon monoxide→ lead solid and carbon dioxide

 $C^{2+} \rightarrow C^{4+} = element oxidized$

PbO \rightarrow oxidizing agent

- 3. Methane + oxygen \rightarrow carbon dioxide and water
 - $C^{4-} \rightarrow C^{4+} = \text{element oxidized}$
- $O_2 \rightarrow oxidizing agent$